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Abstract 

Automatic Test Pattern Generation (ATPG) is one of the core problems in testing of digital 
circuits. ATPG algorithms based on Boolean Satisfiability (SAT) turned out to be very powerful, due to 
great advances in the performance of satisfiability solvers for propositional logic in the last two decades. 
SAT-based ATPG clearly outperforms classical approaches especially for hard-to-detect faults. But its 
inaccessibility of structural information and don’t care, there exists the over-specification problem of input 
patterns. In this paper we present techniques to delve into an additional layer to make use of structural 
properties of the circuit and value justification relations to a generic SAT algorithm. It joins binary decision 
graphs (BDD) and SAT techniques to improve the efficiency of ATPG. It makes a study of inexpensive 
reconvergent fanout analysis of circuit to gather information on the local signal correlation by using BDD 
learning, then uses the above learned information to restrict and focus the overall search space of SAT-
based ATPG. The learning technique is effective and lightweight. Experimental results show the 
effectiveness of the approach. 
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1. Introduction 

 According to Moore’s Law, the design sizes have been growing continuously over the 
last decades. Since it is likely that this trend is going on over the next years, algorithms in the 
field of Electronic Design Automation (EDA) have to be improved. Tools for Automatic Test 
Pattern Generation (ATPG) have to cope with this growth as well. Classical algorithms working 
on a circuit representation reach their limits. The number of faults they cannot classify grows 
and thus the fault coverage decreases rapidly. This leads to a loss of quality. Therefore, new 
efficient techniques have to be developed. 

Due to improvements made for solving the Boolean Satisfiability (SAT) problem in the 
last two decade, SAT-based ATPG has been found to be a promising alternative to the classical 
approaches. In SAT-based ATPG, the problem of finding a test pattern for a particular fault is 
transformed into a propositional satisfiability problem. The problem is satisfiable if, and only if, 
the fault is testable. The search for a satisfying assignment is thus the search for a test pattern. 
SAT-based methods proved to be highly advantageous particularly for hard-to-solve problem 
instances. 

However, SAT-based ATPG algorithms suffer from a major drawback. Most state-of-
the-art SAT solvers require problem instances given in Conjunctive Normal Form (CNF). Hence, 
the ATPG problem needs to be converted into a CNF representation. This generation is a vital 
issue because most of the structural information is lost during the transformation of the original 
problem into CNF. Generic ways are to add clauses for any circuit-based problem. Even more 
problem-specific knowledge can be provided to the SAT solver as guidance. This has been 
suggested for the SAT-based test pattern generator TEGUS [1]. Improvements on the 
justification and propagation have been proposed in [2-6]. 

SOCRATEST [7] was one of the first tools incorporate learning into the standard ATPG 
flow. Implications on reconvergent circuit structures were statically added during a 
preprocessing step, but only certain types of implications were detected. Subsequently, the 
more general concept of recursive learning [8] was applied in the tool HANNIBAL. Recursive 
learning is complete, in principle, i.e. all implications resulting from a partial assignment of 
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values to signals in a circuit can be learned. However finding the cause for a certain implication 
on the circuit structure requires too many backtracking steps in practice. Therefore, this 
technique is not feasible for large circuits. 

In traditional ATPG tools learning typically means an overhead that has to pay off while 
generating test patterns. In contrast, the SAT solver at the core of a SAT-based ATPG tool uses 
learning in the core algorithm to traverse the search space more effectively. 

A SAT solver learns information from a SAT instance each time a non-solution 
subspace is found. Conflict clauses serve as an efficient data structure to store this information. 
Techniques to reuse learned information for similar SAT instances have been proposed [9]. The 
challenge for reuse lies in the creation of the SAT instance and storing the learned information 
in a database. Domain specific knowledge is needed to allow for efficient reuse of this 
information. This specific knowledge is just the circuit structural information. 

Classical ATPG has structural information guide its search process, and easy to handle 
multi-value logic. In contrast, SAT-based ATPG have more elegant and unified model, as well 
as potentially faster and more precise implication process based on efficient learning 
techniques. But due to inaccessibility to structural information and don’t care, there exists the 
over-specification problem of input patterns.  

In order to overcome these problems, we use an added circuit structure layer on the 
generic SAT solve engine to maintain circuit-related information and value justification relations. 
In addition, we explore a new way to improve the efficiency of SAT-based ATPG with the help of 
“cheap” and affordable BDD learning, which similar to the contribution of “conflict clauses” in 
leading SAT tools [9].  

This paper is structured as follows. Firstly, the basics of SAT algorithms and the SAT-
based ATPG are briefly reviewed and an introductory example is given. Next, we detail the 
approach of learning from BDD-based analysis. In Section 4, we present our ATPG framework 
made for overcoming the over-specification problem. In Section 5 offers experimental results on 
the ISCAS benchmark circuits. Finally, conclusions and directions for future research are given. 
 
 
2. Preliminaries 
2.1. Boolean Satisfiability 

The input to the SAT solver is a formula in CNF. A CNF formula is a set of clauses; 
each clause is a set of literals; each literal is either a variable or its negation. The function of a 
clause is the disjunction of its literals, and the function of a CNF formula is the conjunction of its 
clauses. An assignment to the set of variables {0 ,  1 } n⊆V  of formula j  is a mapping from V  to 

{true, false}. A satisfying assignment for formula j  is one that causes j  to evaluate to true. 
Many successful SAT solvers are based on the Davis–Putnam (DP) procedure (DPLL), 

whose modern incarnations are described by the pseudo code of Figure 1.  
 
 

 
 

Figure 1. GRASP_DPLL algorithm 
 
 

The solver maintains a current partial assignment that is extended until it either 
becomes a total satisfying assignment, or becomes conflicting. While extending the partial 

SAT_Solve ( ) { 
while (decide ( )  !=  done ) { 

while (deduce ( )  ==  conflict) { 
blevel = analyze_conflict ( ); 
if ( blevel == 0 ) 

return UNSATISFIABLE; 
else 

backtrack ( blevel ); 
}} 

return SATISFIABLE; 
} 
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assignment, the deduce procedure (also known as BCP: Boolean constraint propagation) tries 
to detect as many implications as possible by using asserting clauses. A conflict occurs 
whenever the simultaneous implication of opposite Boolean values on a variable.  

Modern SAT solver is based on conflict analysis and conflict driven learning (shown as 
Figure 1). When the search reaches an assignment causing a conflict in satisfying the original 
objective, the conflict is analyzed and a conflict clause is produced to prevent the search 
entering the same non-solution space. In a way, accumulating conflict clauses is a process of 
pruning the search space. When the entire space is pruned, the problem can be proved 
unsatisfiable.  
 

2.2. ATPG problem 
Test generation based on Boolean satisfiability can be divided into two independent 

steps: extraction of the CNF formula and identification of a satisfying assignment. Different fault 
models require different CNF formula extractors, but can use identical satisfiability solvers. The 
CNF formula extractor for a single stuck-at fault (SSF) is detailed in [1] and [2].  

We start by introducing unified representations for the ATPG problems that will be used 
in what follows. A combinational circuit C is represented as a directed acyclic graph C = (V, E), 
where V denote the circuit nodes, E identifies gate input-output connection relations. A single 
stuck-at fault ( ,  )w v=y y  is one that causes a net w on C to be permanently stuck at a 

logic value v∈{0, 1}. Faulty circuit denoted by Cf , is then C operation with the fault 
( ,  )w v=y y .  

Here, notation tfoCy represents the fault shadow subcircuit, the parts of the circuit that are 

structurally influenced by the fault site are calculated by a depth first search, which consists of 
the transitive fan-outs of the net w on Cf. Notation supCy  denotes the fault support subcircuit 

made up of the transitive fan-ins of the transitive fan-outs of the wire w of C. Then ATPG 
problem can be cast as a satisfiability problem made up of the circuit corresponding to the 
pairwise xor of the output of tfoCy  and supCy  (see Fig.2 (a)). This construction is similar to a miter 

circuit. The set of all satisfiable assignments for ATPG problem precisely gives the set of all 
input vectors to detect the fault y . It can be formulated as an instance of Boolean Satisfiability 

in CNF. This formula consists of the three parts, i.e., the formula fj  for tfoCy , and the formula gj  for 
supCy , and the formula 

x o rj  for the xor of the output of the former two. The formula is shown as :  

 

f g xor= ∧ ∧yj j j j  (1) 

 
Taking an example, supposed that there exists the circuit such as Figure 2 (b) with a 

SSF ( ,  1 )hy . Then, the problem instance circuit for this ATPG solution is illustrated in Figure 

2(c). 
Consider the example circuit in Figure 2(c). The formula (1) expands on as following:  
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In order to speed up the CNF solver, we in practical augment the additional causes that 

explicitly state structural information of circuit. The first are the activating fault site 
causes 1( ) ( )v v

w fw w−= ∧j , where define 1 0,  w w w w= = ¬ . The second are the active 

clauses  ( ( ) )d d g fG G G= → ≠j j , where Gg and Gf denote the logic gate on the circuit 
supCy  and   tfoCy  respectively, and Gd is on the path from the fault site to a primary output. Adding 

this kind of information can speed up the solver by an order of magnitude because added 
restrictive clauses avoiding portions of the search space. Therefore, the formula of detecting the 
fault y  in CNF can be written as:  

 

f g d w xor= ∧ ∧ ∧ ∧yj j j j j j  (5) 

 
A satisfying assignment to the formula (5) directly determines the values for the primary 

inputs to test the fault.  Hence, a test vector for detect the fault ( ,  1 )h=y y is {a, b, c, d, e} = {1, 

1, 1, 0, 1}. 
 
 

 
 

Figure 2. ATPG problem solution and an example circuit 
 
 
3. BDD Learning Engine 
3.1. BDD Learning 

A BDD [10] is a directed acyclic graph with two terminal nodes, 1 and 0, representing 
logical function 1 and 0, respectively. An internal node associated to an input variable has one 
or more incoming edges and exactly two outgoing edges. A path from root node to terminal 
node 1 represents a cube for the logic function; that is, BDD is an intelligent way of encoding all 
the cubes. The graph is levelized and each level is indexed by a support variable. Formal 
treatments on BDD can be found in [10]. Figure 3 shows an example circuit and its BDD 
structure.  

Our approach focuses on the use of learned clauses generated by a BDD-based 
analysis of the circuit structure – we call this BDD learning. Essentially, a BDD is used to 
capture the relationship between Boolean variables of (a part of) the SAT problem, in the form 
of a characteristic function. In such a BDD, each path to a “0” node denotes a conflict. A learned 
clause corresponding to this conflict is easily obtained by negating the literals that define the 
path. Since a BDD captures all paths to 0, i.e. all possible conflicts among its variables, the 
potential advantage is that multiple learned clauses can be generated and added to the SAT 

(a) Generic ATPG 
problem solution 

(b) A circuit with fault (h, 1) 

(c) ATPG circuit for fault (h, 1) 
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solver at the same time. In contrast, conflict driven learning [9] typically analyzes a single 
conflict at a time. An example with multiple learned clauses generated from a BDD is shown in 
Figure 3(b).  
 
3.2. Learning Node Selection 

 In ATPG or any circuit-based SAT application, the bulk of Boolean constraints arise 
from the circuit structure. Therefore, it is a natural candidate to exploit the circuit structure graph 
to create useful BDDs. The main goal for our BDD learning technique is to be effective but 
lightweight, i.e. it should improve the performance of SAT solver, but without overwhelming the 
SAT solver heuristic. This rule out the possibility of learning on a global scale, i.e. creating a 
BDD and learning clauses for every node in the circuit graph, which is to be too expensive. 
Therefore we perform learning selectively, i.e. by selecting signal nodes of the circuit graph 
around which to perform learning.  
 
 

 
 

Figure 3. An example circuit and its BDD learning 
 
 
How to select learning nodes? It is well known that ATPG would be quite simple for 

combinational circuits if it were not for something called reconvergent fanout. A fanout stem is 
the point at which a circuit node drives more than one other node. When successor nodes of the 
same signal come together at a subsequent node, such as the node is called the point of 
reconvergence. Each reconvergent fanout introduces dependencies in the values that can be 
assigned to nodes. It is these signal value assignments correlation to each other that cause 
conflict in the ATPG process.  

Now that reconvergent fanout is a fundamental cause of the difficulty in testing for 
circuits. How to compute data correlation? Let us take a look at a Total Reconvergence Line 
(TRL, also called as dominator) used in the TOPS algorithm [11]. For simplicity of the 
illustration, we present the concepts using an example circuit shown in Figure 3 (a). As shown in 
the figure, a TRL is the output f of a subcircuit C1 such that all paths between any line in C1 and 
any PO (primary output) go through z. In other words, cutting z would isolate C1 from the rest of 
the circuit. As shown in Figure 3 (a), there are a stem b and a TRL z. TRLs can be identified in 
linear time with a single traversal of the network. As we see, it is the transitive fanin cone 
between the TRL and stem that introduce the signal correlation due to more than one fanout 
branch. If we could compute the corresponding signal correlation of the transitive fanin cone 
between TRL and stem in advance, then we can avoid many conflicting value assignments. 
Therefore, we select TRLs as the learning nodes around which to perform learning.  

Once learning node selection is done, we need to create BDDs that capture 
relationships among variables in the circuit region around the learning node. Here, we created 
BDDs across very few logic levels of the fanin cone of TRL, typically 5-10, in order to avoid BDD 
size blowup. Keeping the BDD sizes small has the additional benefit of creating shorter paths in 
the BDD, thereby resulting in shorter clause lengths. In general, shorter learned clauses are 
likely to be more beneficial than longer learned clauses, since they require less number of 
assignments before resulting in an implication. The potential benefit of BDD learning is in its 
ability to perform non-local learning around the learning nodes.  

 
 

(a) TRL f and its stem        (b) BDD for f and its learning  
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3.3. Generation of Learned Clauses 
After a BDD has been created, we need to generate learned clauses, i.e. dump BDDs 

as CNF formulas. Given a BDD representing a function f in monolithic or conjunctive form, it 
creates clauses starting from f corresponding to the off-set of the function f. Within the BDD for 
f, such clauses are found by following all the paths from the root node of the BDD to the 
constant node 0. In order to favor shorter clauses, only those cubes that are shorter than a 
given maximum clause length, typically 5-10, are used for generating learned clauses. Since the 
maximum clause length varies from 5 to 10, traversal is very fast.  

 
3.4. Adding Learned Clauses to SAT Solver 

For the time being, we only perform static learning. This means that the learning nodes 
are selected using static information of the circuit structure, and learned clauses are added 
statically, before the SAT solver starts the search. This is relatively straight forward, since all 
implications due to the learned clauses occur at the starting level. We use a BDD learning 
engine to encapsulate the essential tasks of learning node selection, creation of BDDs, and 
generation of learned clauses (see Fig.5). This engine is integrated with a generic SAT solver. 
BDD learning is especially performed in conjunction with other learning mechanisms in the SAT 
solver, e.g. conflict-driven learning [5]. Furthermore, a learned clause 

T R L ij generated by the 

BDD learning engine is treated similar to other learned clauses by the SAT solver [12]. For 
example, scores of variables related to these learned clauses are incremented. After integration 
of BDD learning, the formula for detecting the ault ( ,  )w v=y y  is the conjunction of 

formula (5) and
T R L ij , i.e.  

 

TRLi= ∧y yj j j  (6) 

 
 
4. Layered Approach for Solving the SAT Instances of ATPG Problem 

Assigning values to those variables that correspond to the primary inputs is sufficient. 
Once these assignments are, BCP will imply the values of the internal gates and outputs. 
However, the SAT solver usually does not have this information in advance. Decisions may be 
made for internal gates as well. But, when the SAT solver finally returns a satisfying 
assignment, the values of primary inputs must be consistent with those of internal gates, since a 
combinational circuit is considered.  

Typically, the SAT solver does not check whether further assignments are necessary to 
satisfy all clauses, but stops after assigning values to all variables without finding a conflict. For 
ATPG, this means that there are no don't care values contained in the test patterns, but all 
inputs have a fixed value.  

As far as a test pattern for a fault is concerned, it is an input vector that sensitizes the 
fault under consideration and propagates the fault effects to a primary output or an observable 
point. A test pattern is found if and only if both the fault and a propagation path to an observable 
point are sensitized and all unjustified lines are justified. If one of these conditions can’t be 
satisfied, the fault is proved as undetectable. This definition considerably increases the 
efficiency of the SAT-based ATPG algorithms. For example, the previous SAT-based ATPG 
algorithms [1，2] consider that a test pattern is found when the characteristic CNF formula is 
satisfied, i.e., all clauses in the formula evaluate to 1. This approach potentially increases the 
complexity of the ATPG problem. The recent SAT-based ATPG algorithms also check for an 
empty J-frontier instead of whether all clauses in the CNF formula are satisfied [13].  

Similar to the one proposed in [13], we augment a circuit structure layer on the generic 
SAT solver engine to maintain circuit-related information and value justification relations. Figure 
4 represents the layered structure of our test generation algorithms. As shown in Figure 4, the 
BDDs learning are on the top of the hierarchy schema, which built on circuit structure layer.  

Now we can adapt a generic SAT algorithm (shown as Figure 1) to allow proper 
maintenance of justification information. The required modifications are function deduce () and 
analyze-conflict (), now they must invoke dedicated procedures for updating node justification 
information. Additionally, function decide () now tests for satisfiability by checking for an empty 
J-frontier. Our decision heuristic uses a VSIDS heuristic [8], where unassigned literals with the 
highest appearance in the formula are weighted more. However, this weighting is exponentially 
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decayed, to ensure that newly learned clauses get more precedence. If all the generated 
conflict clauses are satisfied, the decision variables are selected by the order of the J-frontier 
currently trying to satisfy. The reason is for hard problems, as the conflict clauses tend to 
accumulate fast during search, the decisions will gradually be dominated by the conflict clauses. 
Therefore, the performance will not degrade much. If no conflict, the condition of test pattern 
found is J-frontier become empty.  

Unlike the structural ATPG, justification and value consistency are formally dissociated 
in our approach, i.e., the SAT algorithm handles value consistency, and the added layer 
handles justification.  

The justification conditions of a gate are as follows:  
If its output is at an output controlling, and if any of the inputs are at a controlling value;  
If its output is at an output non-controlling value, and if all inputs are at non-controlling 

values;  
If it is a XOR gate, and all inputs are assigned.  
A controlling value c is an input value that uniquely determines the output value of a 

gate. If the output of the gate is a negated primitive Boolean function, then its inversion parity i = 
1. The output non-controlling value of a gate is c i⊕ , its output controlling value is  c i⊕ .   
 
 

 
 

Figure 4. The layered structure of ATPG algorithm 
 
 
5. Experimental Results 

In order to validate the effectiveness of the proposed method, we implemented a 
prototype ATPG framework (see Figure 5) in the C programming language, which has 
integrated our BDD learning engine.  

For our experiments, we used the circuit from ISCAS’85 benchmark set [14]. This set 
has 10 combinational circuits in all, which was intended to compare experimental results in the 
field of testing and testability of circuits.  

We use the maximum clause length of 6, which has the better experimental results in 
comparison with among 5-10, and the learning nodes are all the TRLs selected, but we only 
create BDDs of those TRLs less than 10 levels. The results are shown in Table 1.  

 
 

Table 1.  Experimental results for ISCAS’85 circuits 

circuit #gate #ft T1 #trl #cl T2 redu 
C432 160 524 0.49 1 30 0.43 12% 
C499 202 758 0.33 0 0 0.34 -3% 
C880 383 942 0.60 24 159 0.41 31% 
C1355 546 1574 1.23 184 616 0.95 23% 
C1908 880 1879 2.04 160 1215 1.24 39% 
C2670 1193 2747 3.37 193 1447 1.73 49% 
C3540 1669 3428 5.75 168 1332 2.16 62% 
C5315 2307 5350 4.83 339 2403 2.19 55% 
C6288 2416 7744 17.9 0 0 18.1 -1% 
C7552 3512 7550 8.73 583 3068 3.98 54% 

 

Column 2 and 3 respectively lists the number of gates and faults of the circuits. Column 
4 reports the total time (T1, in seconds) taken for the test generation of all faults without the use 
of any BDD learning. The next three columns respectively represent the number of selected 
TRL, learned clauses, and total time (T2, in seconds) taken for the test generation of all faults of 
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circuit with static BDD learning. Both didn’t use random patterns and fault simulation. The 
column 8 indicates the percentage reduction in time. In comparison to basic ATPG, our results 
show the total runtime reduction of up to 62% in the case of BDD learning. Also shown in Table 
1, reduced runtimes vary with the circuit because ATPG is an NP-complete problem and used 
method of BDD learning is a heuristic. In the case of C499 and C6288, BDD learning adds extra 
efforts because both have no any TRL. Due to no random patterns and fault simulation in both 
cases, our algorithm detects all testable faults and proves all redundant faults to be redundant 
without aborting any faults. Therefore, it demonstrates that our algorithm is robust and effective. 
 

 

 
 

Figure 5. Pseudo-code for BDD learning & test generation 
 
 
6. Conclusion 

Learning techniques of automatic test pattern generation SAT-based is effective. Its 
performance is dominantly determined by the practical efficiency of the backend SAT solver. In 
this paper, we have described details of a lightweight and effective BDD learning technique, 
which adds learned clauses generated from BDDs to supplement other learning mechanisms 
and to restrict the overall search space in the underlying SAT-solver engine used in ATPG. We 
have demonstrated the effectiveness of our techniques on all ISCAS’85 benchmark circuits, 
which obtained up to 62% reduction in the total runtime.  

We believe that the ATPG framework provides many opportunities for combining the 
relative benefits of SAT and BDDs and specific knowledge of circuit domain. Our work is a step 
in that direction. The robustness of SAT-based ATPG can be further increased by using the 
proposed circuit-based dynamic learning technique. A future direction of research work is to 
develop solving algorithms which are able to use knowledge about the ATPG problem to 
explore the solution space much faster. 
 
 
 

BDD_learning_engine ( ) { 
while (for each stem stem_i in stem_list ) { 

( TRLi, level ) = find_TRL ( stem_i ); 
if ( level < depth_threshold ) { 

  bddi = create_bdd (TRLi, level ); 
  

T R L ij  = generate_learned_clauses( bddi ); 
}}} 
 
TPG ( ) { 

while (for each fault y  in  fault_list ) { 
 create CNF formula yj for tfoCy  and supCy ; 
 remove fault y  from fault_list; 
 if ( stem_i ∈  stem_list  in tfoCy )  
   

TRLi
i

= Uy yj j j ; 
 workout = SAT_Solve ( yj , &test_pattern ); 
 switch (workout ) { 
   case SATISFIED: 
       augment y  to detected_fault_list; 
       augment test_pattern to test_pattern_list; 
       break; 
   case UNSATISFIED: 
       augment y  to redundant_fault_list; 
       break; 
   case ABORTION: 
      augment y  to aborted_fault_list; 
     break; 

}}} 
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