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 Code smells refers to any symptoms or anomalies in the source code that 

shows violation of design principles or implementation. Early detection of 

bad code smells improves software quality. Nowadays several artificial 

neural network (ANN) models have been used for different topics in 

software engineering: software defect prediction, software vulnerability 

detection, and code clone detection. It is not necessary to know the source of 

the data when using ANN models but require large training sets. Data 

imbalance is the main challenge of artificial intelligence techniques in 

detecting the code smells. To overcome these challenges, the objective of 

this study is to presents deep convolutional neural network (D-CNN) model 

with synthetic minority over-sampling technique (SMOTE) to detect bad 

code smells based on a set of Java projects. We considered four code-smell 

datasets which are God class, data class, feature envy and long method and 

the results were compared based on different performance measures. 

Experimental results show that the proposed model with oversampling 

techniques can provide better performance for code smells detection and 

prediction results can be further improved when the model is trained with 

more datasets. Moreover, more epochs and hidden layers help increase the 

accuracy of the model. 
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1. INTRODUCTION  

Software systems need to be constant changed by developers. Code smells are a design issue or 

developer changes to source codes that indicate violation of software design rules, e.g.: abstraction or 

hierarchy encapsulation which can cause serious problems during systems maintenance and may impact the 

quality in the future. Code smells may lead to future degradation in software projects that makes software 

hard to evolve and maintain, and it can be an effective indication of whether source code should be refactored 

[1]-[3]. Detection of bad code smells in source code is a significant step for guiding the code refactoring 

process. Most code smells detection methods rely on object-oriented metrics as input to determine whether 

software projects contain bad smells. There are several case studies that have been done on object-oriented 

software projects to determine empirical thresholds for metrics. Several static analysis tools and code 

restructuring methods have been developed to discover and solve source code problems, and these tools and 

methods provide various ways of analyzing source codes [4]. Previous studies have classified code smells 

into three main categories: application, class , and method level smells [5].  

Class imbalance is one of the most common problems for classification models during training and 

validation. The class imbalance problem hinders the efficiency of model classification and produces unbalanced 

https://creativecommons.org/licenses/by-sa/4.0/
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false-positive and false-negative results. There are many data sampling techniques that are used to deal with 

imbalanced class distributions such as oversampling and undersampling techniques. The oversampling 

techniques supplements instances of the minority class to the dataset, while the undersampling techniques 

eliminates samples of the majority class for the goal of obtaining a balanced dataset. Synthetic minority over-

sampling technique (SMOTE) is the most oversampling techniques that are widely used for solving class 

imbalance. SMOTE is technique used to increases the number of instances from the minority class by 

generating new synthetic instances based on the nearest neighbours belonging to that class [6]. Convolutional 

neural network (CNN) is the latest supervised learning approches currently used in several practical applications 

such as natural language processing, image recognition, and detecting code smells [7], [8].  

The main goal of this study is to introduce deep convolutional neural network model with over-

sampling echniques for bad code smells detection. Four different code smells were used to evaluate the 

capability of the proposed model based on various performance measures such as accuracy, precision, recall, 

and F-Measure. The structure of this paper is organized as shown in; section 2 presents a discussion on 

related work. Section 3 presents background on the topics of detection strategies of code smells, artificial 

neural networks as well as deep convolutional neural networks. After that, our research methodology is 

presented in section 4. Section 5 presents the experimental results and discussion followed by conclusions in 

the last section. 
 

 

2. RELATED WORK 

Research in the field of detection of bad code smells started after 1999 when Fowler et al. [9] 

specified the code smells and provided their respective refactoring opportunities in his book. There are 

currently several literature reviews and surveys in the field of code smell detection and refactoring [10]. We 

have found in the literature that there are many studies that have provided different approaches and strategies 

for detecting bad code smells in modern software systems [5], [11]-[13]. Kim [5] proposed a system based on 

a neural network model for detecting bad cods smells and clarifies the relevance between code smells and 

object-oriented metrics. The model was evaluated based on a set of Java projects. The empirical results 

showed that the prediction outcomes are improved more when the model is highly trained with more datasets. 

Further, more epochs and hidden layers help increase the accuracy of the model. Pecorelli et al. [6] 

investigated five data balancing techniques able to mitigate data unbalancing issues to understand their 

impact on machine learning algorithms for code smell detection. The experiment was performed based on 

five code smell datasets that extracted from 13 open-source systems. The experimental results show that the 

machine learning models relying on SMOTE technique realize the best performance.  

Virmajoki [7] presented a prototype based on machine learning, neural networks, and deep learning 

to detect code smells. The prototype has been implemented by using the Python programming language. The 

prototype was evaluated using data collected from the MLCQ code smells dataset. Although only a relatively 

little amount of data was collected and used for training the model, the model was able to detect code smells. 

Liu et al. [8] proposed a new DL-based approach to detecting code smells. The approach was evaluated 

based on four types of code smell: feature envy, long method, large class, and misplaced class. The 

experiment results show that the proposed approach significantly improves the state-of-the-art. Francesca 

Fontana et al. [11] presented a method using different machine learning algorithms to detect four code smells 

based on 74 software systems. The experimental results found that all algorithms achieved high 

performances, but imbalanced data caused varying performances that need to be addressed in the future 

studies. Kaur and Singh [13] suggested a neural network model based on object-oriented metrics for 

detection bad code smells. The model has been applied to find twelve bad code smells. The model has been 

trained and tested using many epochs and hidden layers. Experimental results showed that there is a 

relationship between code smells and object-oriented metrics. Sharma et al. [14] proposed a new method for 

code smell detection using CNN and recurrent neural network. The experiments were conducted based on C# 

sample codes. The experiment results show that, it is feasible to detect smells using DL methods and transfer-

learning is possible to detect code smells with a performance similar to that of direct learning. After 

reviewing some previous studies, we noted that automatic detection tools are needed to help the developers to 

finding code smells systematic. We also noted that most of the proposed methods ignore the class imbalance 

problem. Therefore, our study focuses on solving the class imbalance problem using SMOTE technique. 
 

 

3. BACKGROUND 

In the previous studies, there are several strategies and methods developed for detecting bad code 

smells. This section presents a brief background information about the topics of detection strategies of code 

smells, artificial neural networks and as well as deep convolutional neural networks. 
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3.1.  Detection strategies of code smells 

Detection strategies are methodologies using to detecting code smells based on a combination of 

object-oriented metrics with predefined threshold values to identify the main symptoms that describe the 

code smells [15], [16]. Most approaches used to detect code smells rely on heuristics and discriminate code 

artifacts affected or not affected by a certain type of smell using detection rules which compare the values of 

pertinent metrics that extracted from source code with some experimentally identified thresholds. Where 

most of the current detectors need the designation of thresholds which allow them to distinguish code smells: 

hence, the chosen of thresholds strongly influence the performance of detectors and the chosen of appropriate 

representative thresholds is a key factor to compose efficient detection strategies. Previous work identified 

various strategies, each detection strategy is composed of a sequence of clauses connected by the logical 

operators AND and OR including thresholds [17]. 

In this study, the selected examples “smell” at the level of class, method with high frequency, that 

may have the greatest negative impact on the software quality, and which can be recognized by some 

available detection tools, at the class level selected God class and data class, while at the method level 

selected long method and feature envy [12]. Table 1 shows the detectors considered for building code smells 

datasets. Thus, the following four typical code smells were considered and evaluated in this study. 
 

 

Table 1. Detectors considered for building code smells datasets 
Smells Detectors 

God Class iPlasma, PMD 

Data Class iPlasma, Fluid Tool, Antipattern Scanner 
Feature Envy iPlasma, Fluid Tool 

Long Method iPlasma, PMD, Marinescu [2] 

 

 

3.1.1. God class 

God classes refer to large, complex, and non-cohesive modules or classes that violate the principle 

of implementing only one concept per class and dominates a great part of the main system behaviour by 

implementing almost all the system functionalities. It is distinguished by its complexity and by encompassing 

a high number of instance variables and methods [18]. The detection of god class is done using three 

software metrics: access to foreign data (ATFD) expressing the number of foreign attributes used by a 

software class, weighted method per class (WMC) is the sum of all statistical complexity of all methods in 

software class, and tight class cohesion (TCC) refer to a relative number of method pairs of a class that 

accesses in common at least one feature of the measured class [19]. 

 

3.1.2. Data class 

Data class is a class that has only data without functions or any behaviours, and does not process this 

data [6], [10], [18]. Or it is a class that passively store data [15]. This class constitutes that code smells that 

contain something unnecessary whose removal can make code easier to understand, effective, and cleaner. 

The rule to calculate data class is (WMC<X AND NOPA>Y) OR (WMC<X AND NOAM>Z), where X, Y, 

Z are the threshold values. WMC is the weight method counts, NOPA is the number of Public Attributes, and 

NOAM is the number of accessor methods [5]. 

 

3.1.3. Feature envy 

Feature envy is a sign of breach of the rule of grouping behaviour with related data and happens 

when a method is more interested in other properties of the classes than in the ones from its class. This kind 

of smell affects the coupling, cohesion, and encapsulation design aspects of the system, representing a 

problem in the abstract design of the system. It is classified as a coupler smell and affects method/property 

entities [2]. Thus, this method tends to make so many calls to use the data of the other classes [5], [18]. 

 

3.1.4. Long method 

The long method code smells refer to the method that is too long and increases the compatibility of 

the system. It is classified as a blotter smell that affects method level entities [2]. It is methods that tend to 

centralize the functionality of a class and tends to have too much code, to be complex, to be difficult to 

understand, and to use large amounts of data from other classes [11], [12]. 

 

3.2.  Artificial neural networks 

Artificial neural networks (ANNs) are biologically inspired computer software built to imitate the 

way in that the human brain processes information. ANN's are machine learning models which can be used 

for classification purposes. An ANNs model contains multiple units (layers) for information processing 
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which are known as neurons. The layers are typically named as input layer, hidden layer, and output layer 

[7], [20]. ANNs collect the knowledge through detecting the patterns and relationships in data and learning or 

training through experience. When neural networks are used for data analysis, it must be important to 

distinguish between ANN models which refer to the network's arrangement and ANN Algorithms which 

refer to computations that eventually produce the network outputs. There are two approaches to train ANNs: 

supervised and unsupervised. The most often used ANNs for prediction and classification tasks is a fully 

connected and supervised network with a backpropagation learning rule. During learning stage, weights of 

each neuron are considered and adjusted according to the requirements. To obtain the final weight for 

neurons, each neuron gives input to each preceding layer, and later these inputs are multiplied by its weight. 

According to this process, the neuron computes the activation level from this sum, and output is sent to the 

following layer where the final solution is estimated [5], [18]. The output of a neuron that is in the layer can 

be described by (1): 

 

𝑌𝑖  =  𝑓𝑖( ∑ 𝑋𝑗
𝑛
𝑗 =1 𝑊𝑖𝑗 +  𝑏𝑖) (1) 

 

where 𝑌𝑖  represents network output, n is the total number of inputs to this neuron, 𝑋𝑗 represents network 

input, 𝑊𝑖𝑗 is the connection weights between input and output nodes, 𝑏𝑖 is the bias and 𝑓𝑖 is the transfer 

function. The architecture of the neural network is shown in Figure 1. 

 

 

 
 

Figure 1. ANN architecture for code smells detection 

 

 

3.3.  Deep convolutional neural networks 

Deep learning (DL) is a type of machine learning that allows computational models consisting of 

multiple processing layers to learn data representations with multiple levels of abstraction [14]. DL architecture 

has been widely used to solve many detections, classification, and prediction problems. CNN belongs to a class 

of deep neural networks that are used to process data that has a known, grid-like topology [21]. DL model is 

inspired by the typical CNN architecture used in image classification and consists of a feature extraction part 

and a classification part as shown in the Figure 2. These parts consist of multiple layers are convolution, batch 

normalization, and maximum merge layers. These layers constitute the hidden layer of the architecture.  

The convolutional layer performs convolution operations based on the specified filter and kernel parameters and 

calculates the network weights to the next layer, while the maximum pooling layer achieves a reduction in the 

dimension of the feature space. Batch normalization is used to mitigate the effect of different input distributions 

for each training mini-batch for the purpose of improving training [22], [23]. Activation functions enabling the 

training of DL model in a fast and accurate manner. There are many activation functions used in DL such as 

sigmoid, rectified linear unit (Relu) and hyperbolic tangent (Tanh) [24], [25]. Our model uses various functions 

such as the ReLU function as the activation function for the input and hidden layers, and the sigmoid function as 

the activation function for the output layer as shown in (2) and (3). 

 

ℎ𝑖
𝑚 =  𝑅𝑒𝐿𝑈(𝑊𝑖

𝑚−1 × 𝑉𝑖
𝑚−1 + 𝑏𝑚−1) (2) 

 

where ℎ𝑖
𝑚

 represents convolutional layer, 𝑊𝑖
𝑚−1 represents the weights of neuron, 𝑉𝑖

𝑚−1 represents the 

nodes, and 𝑏𝑚−1 represents the bias layer. 

 

𝑆(𝑥) =  
1

 1+ 𝑒
− ∑ 𝑊𝑖+𝑋𝑖

 
𝑘 +𝑏 (3) 
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where 𝑋𝑖 represents the input, 𝑊𝑖 is the weight of the input and b is the bias. 

 

 

 
 

Figure 2. CNN model for code smells detection 

 

 

4. METHOD 

In previous work, many machine learning and ANNs algorithms have been developed for code 

smells detection. Most studies of code smells detection divide the data into two sets: a training set and a test 

set. The training set is used to train the model, whereas the testing set is used to evaluate the performance of 

the model. Once the model is built, its performance needs to be evaluated. This study proposed a method to 

train code smells detection model based on deep convolutional neural network model with oversampling 

techniques. The proposed method is shown in Figure 3 and Table 2 shows the components of proposed 

detection system. 

 

 

 
 

Figure 3. Proposed process of code smells detection 

 

 

Table 2. Components of proposed detection system 
Component name Description 

Qualitas Corpus (QC) of systems This project composed of 111 systems written in Java 
Code analysis tool Tool used for analyze the projects to extract software metrics values 

Software metrics Metrics used for measure and characterize software engineering projects 

Code Smells datasets Set of code smells 

Data Preprocessing Improve data quality 

Features extraction Identify the most relevant features 

SMOTE Synthetic Minority Over-sampling Technique 
Training datasets Datasets used for train the model 

Test datasets Datasets used for test the model 

CNN model Model used for detecting bad code smells 

 

 

5. DATA MODELLING AND COLLECTION 

The code smells detection model in this study uses a supervised learning task that relies on a large 

set of software metrics as independent variables. Having a large number of systems or datasets is 

fundamental to train neural network models and allow generalization of the obtained results. To perform the 

analysis and experiment, the model used the proposed datasets in Fontana et al. [11]. The authors selected 74 

open-source systems from qualitas corpus. The qualitas corpus (QC) of systems collected by Tempero et al. 

[26]. The corpus used is composed of 111 systems written in Java belonging to different application domains 

and characterized by different sizes. The reason for the selection is that the systems must be compliable to 

correctly compute the metrics values [11]. Table 3 shows a summary of the selected projects. 
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Table 3. Summary of project characteristics [11], [27] 
Number of systems Lines of code Number of packages Number of classes Number of methods 

74 6,785,568 3420 51,826 404,316 

 

 

6. SOFTWARE METRICS EXTRACTION 

Software metrics are essential aids to measure and improve of the software quality, and these 

metrics are used to measure and characterize software engineering products. The main role of software 

metrics is to estimate and measure some characteristics of systems such as classes, inheritance and 

encapsulation. Some software metrics have been used to measure software design complexity and its impact 

on software quality attributes such as maintainability and reusability. Other metrics have been used to solve 

different problems such as identifying software faults, code clone prediction, predicting testing complexity, 

and detect codes smells [5]. Several object-oriented metrics have been presented by Abreu, Chidamber, and 

Kemerer (CK), Li and Henry, MOOD, Lorenz and Kidd. These can be classified into different classes like 

metrics for source code analysis, metrics for software testing, and metrics for quality assurances. 

There are static and dynamic metrics as well. Static metrics refer to metrics collected from the static 

source code like documents of specification, design schema, and code listings. For example, lines of code, 

weighted methods per class, and the coupling between objects. whereas dynamic metrics refer to data 

collected from the runtime behavior of software, e.g., dynamic coupling, dynamic lack of cohesion, and 

dynamic coupling between objects, these metrics aim to evaluate the design of the object-oriented 

application, rather than the implementation of the system [28] selected metrics in this study are a large set of 

object-oriented metrics that are considered as independent variables as shown in Table 4. All these metrics 

have been calculated through software tools, which analyzes the source code of Java projects using the 

eclipse JDT library. These tools are design features and metrics for Java, which have been designed to be 

integrated as a library into other projects [11]. 

 

 

Table 4. Selected metrics in this study [11] 
Size Complexity Cohesion Coupling Encapsulation Inheritance 

LOC CYCLO LCOM5 FANOUT LAA DIT 

LOCNAMM* WMC TCC ATFD NOAM NOI 

NOM WMCNAMM*  FDP NOPA NOC 

NOPK AMWNAMM*  RFC  NMO 

NOCS AMW  CBO  NIM 

NOMNAMM* MAXNESTING  CFNAMM*  NOII 

NOA WOC  CINT   

 CLNAMM  CDISP   
 NOP  MaMCL§   

 NOAV  MeMCL§   

 ATLD*  NMCS§   

 NOLV  CC   

   CM   

 

 

7. DATA PRE-PROCESSING AND FEATURES SELECTION 

Pre-processing the collected data is one of the important stages before constructing the model. Not 

all data collected is suitable for training and model building. Anyhow the inputs will greatly impact the 

performance of the model and later moreover affect the output. Data pre-processing is known as a group of 

techniques that are applied to the data to improve the quality of the data before model building for the 

purpose of removing noise and unwanted outliers from the data set, dealing with missing values, and feature 

type conversion [14]. Feature selection (FS) is one of the significant pre-processing steps and plays a key role 

in classification tasks. FS is the process of identifying and removing the irrelevant and redundant features to 

improve the performance of the classifier. FS approaches can be divided into three main classes: wrapper-

based methods, filter-based methods, and embedded methods [1], [29], [30]. 

 

 

8. DATA IMBALANCE 

Data imbalance is one of the biggest challenges in classification models and represents cases where 

examples of one class are much smaller than other classes. The data imbalance problem makes classification 

models not effectively predict minority modules. There are many techniques that have been used to solve the 

problem of unbalanced data such as sampling techniques, bagging and boosting-based ensemble methods, 

and cost-sensitive learning techniques [6]. In this study, the dataset chosen for the task of code smells 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Deep convolutional neural network model for bad code smells … (Nasraldeen Alnor Adam Khleel) 

1731 

detection is highly imbalanced. Each of the four datasets is composed of 420 instances (classes or methods), 

the two first datasets concern the code smells at class level where the number of instances is 140 for data 

class and god class. While at method level, the number of instances for Long Method is 140 and the number 

of instances for Feature envy is 140. To solve the problem of data imbalance, we modifed the original 

datasets, by modifying the distribution with the algorithm of SMOTE. Figure 4 shows the distribution of 

learning instances over original and balanced datasets. 

 

 

 
 

Figure 4. Distribution of learning instances over original and balanced datasets 

 

 

9. MODEL BUILDING AND EVALUATION 

To evaluate the model performance, the study used a set of common performance measures based 

on the confusion matrix such as accuracy, precision, recall, and f-measure. The confusion matrix is used to 

describe the performance of a classification method using a set of test data. Each row of the matrix 

corresponds to a predicted class, whereas each column of the matrix corresponds to an actual class. The 

confusion matrix is a specific table that is used to measure the performance the model. The correlation 

summarizes the results of the testing algorithm and present a report of i) true positive (TP), ii) false positives 

(FP), iii) true negatives (TN), and vi) false negatives (FN). Table 5 shows the confusion matrix. 

- Accuracy=(TP+TN)/(TP+FP+FN+TN) (4) 

- Precision=TP/(TP+FP) (5) 

- Recall=TP/(TP + FN) (6) 

- F-Measure=(2 * Recall *Precision)/(Recall + Precision) (7) 

 

 

Table 5. Correlation matrix 

Predicted 
Actual 

No Yes 

No TN FP 
Yes FN TP 

 

 

10. EXPERIMENTAL RESULTS AND DISCUSSION 

An empirical study was conducted to evaluate and prove the effectiveness of our proposed model 

for detecting four bad code smells. In order to get accurate results, the proposed model was trained and tested 

with a set of huge open-source projects which contain more than 6,785,568 source code lines. The dataset 

size is large enough in this study to train the model. The model was trained and tested based many epochs 

and hidden layers. As shown in Figure 5 the LOC is the most influential metric in code smells. According to 

Tables 6 and 7 mentioned:  

- Accuracy for the four code smell datasets: the proposed model using the balanced datasets achieves 

greater accuracy than the proposed model using the original datasets on the feature envy and long method 

datasets, which are 98% and 100%. The lowest accuracy was achieved by the proposed model using the 

original datasets on the Feature Envy dataset by up to 95%.  

- Precision for the four code smell datasets: the proposed model using the balanced datasets achieves 

greater precision than the proposed model using the original datasets on the Feature Envy and Long 

Method datasets, which are 98% and 100%. The lowest precision was achieved by the proposed model 

using the original datasets on the Feature Envy and Long Method datasets by up to 93%. 

- Recall for the four code smell datasets: the proposed model using the balanced datasets achieves greater 

recall than the proposed model using the original datasets on the god class, data class and feature envy 
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datasets, which are 97%, 100 % and 98%. The lowest recall was achieved by the proposed model using 

the original datasets on the Feature Envy dataset by up to 93%. 

- F-Measure for the four code smell datasets: the proposed model using the balanced datasets achieves 

greater F-Measure than the proposed model using the original datasets on the god class, feature envy and 

long method datasets, which are 97%, 98% and 100%. The lowest F-Measure was achieved by the 

proposed model using the original datasets on the feature envy dataset by up to 93%.  

According to Figure 6, boxplots represent performance measures obtained by the CNN model on the 

original and the balanced datasets. Figures 7 and 8 show the training and validation accuracy, and training 

and validation loss based on the results obtained from balanced datasets. After comparing the results obtained 

by the proposed model using the original and balanced datasets, we noticed that the best and reliable results 

were obtained through the proposed model using the balanced datasets by SMOTE and over-sampling 

techniques play an important role in dealing with proplem of data imbalance. 

 

 

 
 

Figure 5. The distribution of software metrics with code smells 

 

 

Table 6. Performance analysis for proposed CNN Model - Original Datasets 

Original datasets 
Performance measures 

Accuracy Precision Recall F-Measure 

God class 0.96 0.97 0.94 0.96 

Data class 0.99 1.00 0.96 0.98 
Feature envy 0.95 0.93 0.93 0.93 

Long method 0.98 0.93 1.00 0.96 

 

 

Table 7. Performance analysis for proposed CNN Model - balanced datasets 
Balanced datasets using  

SMOTE technique 

Performance measures 

Accuracy Precision Recall F-Measure 

God class 0.96 0.97 0.97 0.97 

Data class 0.98 0.97 1.00 0.98 
Feature envy 0.98 0.98 0.98 0.98 

Long method 1.00 1.00 1.00 1.00 

 

 

 
 

Figure 6. Boxplots represent performance measures obtained by CNN Model on the original and balanced 

data sets 
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Figure 7. Training and Validation Accuracy over balanced datasets 

 

 

 
 

Figure 8. Training and validation loss over balanced datasets 
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11. CONCLUSION 

This paper presents a methodology for the detection of bad code smells using CNN model with 

oversampling techniques based on software metrics. CNN model has been applied to sample Java projects in 

different application domains. In this paper, the proposed detection system attempts to detect four code 

smells in Java projects. To predict the performance of the model and check if the number of epochs used in 

training has any effect on the results, the proposed model was trained using a different number of epochs and 

many hidden layers. The experimental results were compared based on different performance measures such 

as accuracy, precision, recall, F-Measure. The results refer that, CNN model with oversampling techniques 

has high potential and accuracy in detecting code smells. Finally, software metrics have a close relationship 

with code smells. 
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