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Abstract 
Transient stability problem for multi-machine infinite bus system with the generator excitation 

was addressed via the non-certainty equivalent nonlinear re-parameterization method. The system need 
not to be linearized. The damping coefficient uncertainty was considered. A non-certainty equivalent 
excitation controller and a novel parameter updating law were obtained simultaneously via adaptive 
backstepping and Lyapunov methods to achieve stability of the error systems. Simulation results showed 
that the proposed controller had good transient performance. 
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1. Introduction 

The past decade has witnessed a rapid increase in the size and complexity of power 
systems. Maintaining power system stability is thus one of the main concerns [1-5], and see the 
references therein. The design of an advanced control system to enhance the power system 
stability margin so as to achieve higher transfer limits is one of the major problems in power 
systems, which has attracted a great deal of research attention in recent years [6-12]. 
Synchronous generator excitation control is one of the most important, effective and economic 
methods to enhance the stability of power systems [6]. Generator excitation control can not only 
enhance the power system static stability limit, but also attenuate low-frequency 
electromechanical oscillations inherent to power systems, during transient conditions. 

With the development of power system research, there are a lot of references about 
single-machine power systems [8-13], and some researchers have increasing interesting in 
multi-machine system stability. Distributed exciting controllers based on adaptive backstepping 
are designed by using PSO optimization algorithm. A nonlinear adaptive 

2L -gain disturbance 

attenuation controller was given in [14] by using backstepping method. A state-feedback 
controller based on passivity for multi-machine power system has been proposed in [15].The 
controller design method given in [12-15] follow the classical certainty equivalence principle, a 
new non-certainty equivalent adaptive controller design method was firstly proposed in [16], and 
it was further studied in [17-21]. It is always reasonable to expect availability of a priori 
information on the “structure” of uncertain plant parameters. For example, we may have a priori 
knowledge in terms of lower and/or upper bounds on the values of the uncertain parameters. 
One possible solution for these classes of systems is to ignore all such a priori available 
unknown parameter properties, thereby making feasible the application of certainty equivalence 
adaptive control methods with affine (linear) parameterization. The case against non-utilization 
of a priori information on uncertain parameter structure can be argued on the basis of the fact 
that the parameter search (estimation) process takes place outside the feasible region where 
the corresponding “true” parameters lie, ultimately leading to poor and slow tracking error 
convergence [22]. To avoid this problem, one could adopt the technique of projection [22] and 
thereby absorb the prior knowledge on bounds (lower and upper) of unknown parameters. 
However, an obvious disadvantage of any parameter projection method is the generation of 
non-smooth control laws, thereby potentially causing practical difficulties with respect to either 
requirement of actuators with large (infinite) bandwidths or possibility of exciting high-frequency 
unmodeled (flexible) dynamics. A new specific uncertain parameter structure, wherein the 
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parameters are known to lie within a priori specified intervals is given in [23]. We provide a new 
full state feedback adaptive control solution that is custom-built for this unknown parameter 
structure through a process very different from the parameter projection based conventional 
certainty equivalence approach. The new solutions derived here enforce a priori known bounds 
of the uncertain parameters on their corresponding estimates at all times, without compromising 
on control smoothness or global stability guarantees for the closed-loop dynamics. 

In this paper, a non-certainty equivalent adaptive controller is designed for multi-
machine power systems by using the method proposed in [23] when the damping coefficient is 
unknown, which can guarantee all the state trajectories of error systems are bounded and 
unknown damping coefficient is also bounded. The remainder of paper is as follows: In Section 
II, the general model for power system is given, we translate the presented model into 
necessary form in Section III, Section IV gives an important lemma, and a new non-certainty 
equivalent adaptive controller is designed, a numerical simulation is tested in Section V, Section 
VI gives some summarizing remarks and suggestions for future work. 

 
 

2. Problem Description 
The multi-machine power systems with the generator excitation is considered, 

general model of multi-machine power system with excitation control consists of n generators 
can be built as follows [1]. 
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where 1,2.....,i n= and the active power of generator i  is 
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In system (1), where 
iδ  is running angle of the generator rotor, =ij i jδ δ δ− ; 

iω  is the 

rotor speed of generator, which initial value is equal to 
0iω ; 

miP and 
e iP are the mechanical power 

of generator i  and the excitation power, respectively; 
iH  is the moment of inertia of the 

generator i rotor; 
iD and '

qiE  are the damping coefficient and then transient EMF in q axis of 

generator i , respectively; 
0d iT and fiV  are the time constant of the exciting windings of the 

generator i  and the voltage, respectively; 
ijB  is the mutual susceptance of generators i; ijα

 
is the 

complementary angle of impedance angle, 
iiG  

is the conductance of generator i; 
i jY  is the 

mutual admittance between the ith and jth generators; fiV
 
is the control electrical signal.  

According to the generator theory, we have 
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Then the system (1) becomes 
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for 1 , 2 . . . .i n= .  

 
 
3. Model Transformation 

In this section, we will transform the system (2) into integrator chain form, which is 
necessary for designing controller. 

Some definitions are given to simplify the system (2), 
1 0i i ix δ δ= − , 

2 0i i ix ω ω= − and 
3 0i q i q ix E E′ ′= − , in which 0iδ , 0iω and 0qiE′  are the initial value of 

corresponding variables. Let 0
2 3, , ,

i i i i

i
i i q d i d d

i

k b X X b X X
H

ω ′ ′= = − = −  are known constants, and 

1
i

i
i

D
b

H
= − is a unknown constant, then the system (2) can be transformed into (3), 

 
1 2i ix x=&  (3a) 

 
2 1 2 3 0 2( ( ) )
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1 1 2 2[ ] T

i i iz q x q x=  (3d) 
 
where, 

1 1 2 2[ ] T
i i iz q x q x=  is the regulation output, q1 and q2 are the non-negative 

weighting coefficients satisfied 2 2
1 2 1q q+ ≤ .Furthermore, let 

1 1 2 2     ,i i i iX x X x= =，  3 1 1 3 0 2( ( ) ))
ii i m i qi qi di qiX b x k P x E I b I I′= + − + − ； 

We have 3 0 1 2 2 3( ) [ ( ) ] ( )
ii qi i m di qi i qix E b X k P b I I X kI′+ = + − − ,The system (3) can be 

transformed into (4), 
 

1 2

2 3

3 2 3

1 1 2 2

,

,

,

[ ]

i i

i i

i i i i i

T
i i i

X X

X X

X X u

z q X q X

θ

=

=

= +

=

&

&

& （X ）+
 (4) 

 
where

1i ibθ =  is unknown constant, 
0

3

1

d i

i i f i
q iT

u X u
kI ′

= − + .Note that system (4) is a multi-

machine power system with unknown parameters. 
 
 
4. Main Theorem 

In the next, we will give an important lemma .We consider an nth-order nonlinear 
single input system linearly parameterized through constant uncertain scalar parameters with 
the following structure. 
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Define 

( ) ( ) ( )me t x t x t= −  
Error systems are constructed 
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The method of using nonlinear re-parameterization for adaptive control of error 

systems has been proposed in [23]. The following result from [23] will be instrumental for our 
developments. 

Theorem 1 [23]: Consider the trajectory tracking problem associated with the nth-
order single input nonlinear system of Eq. (5) where the constant uncertain parameters 

kθ , re-

parameterized in terms of 
kφ  in accordance with Eq. (10), satisfy a priori specified lower and 

upper bounds of the form ( )min max,k k kθ θ θ∈ . Then the following smooth adaptive controller 

ensures global stability and asymptotic convergence 1 2lim[e (t),e (t),  ... e (t)] 0nt →∞
=  for all initial 

conditions: 
 

,
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where the index k ranges from 1, ,k N= L ; γ  is any positive scalar, max min

1
( )

2k k kθ θ∆ = −  and 

the positive scalars 
1 2, , , nα α αL  are the coefficients of any n-th order monic and Hurwitz 

polynomial. 
In the following, we will design non-certainty equivalent adaptive excitation controller 

for multi-machine power systems by using the preceding lemma. 
Defining the variable as , 1 , 2m i m iX X=& , , 2 , 3m i m iX X=& , 

,( ) ( ) ( ) .i i m ie t X t X t= −  
we have  
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We begin by re-parameterization of each 

iθ  in Eq. (12) in terms of an associated new uncertain 

variable 
iφ  as follows: 

 

max min min

1
( )(1 tanh )

2i i i i iθ θ θ φ θ= − − + ，  

 
It can be seen from re-parameterization that the obvious advantage for such a 

benefit is that for all values of 
iφ , the uncertain parameter 

iθ  is restricted to lie in ( )min max,k kθ θ . 

However, the system governing equations in Eq. (12), which are linear (affine) in terms of 
iθ , 

immediately become nonlinear in terms of 
iφ . In what follows, we develop a new class of 

smooth adaptive controllers that handle the nonlinear parameterization of Eq. (13) and at the 
same time, ensure satisfaction of the tracking control objective. 
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For the system (7), Hurwitz matrix is constructed and systems (7) can be rewritten as 
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Theorem 2: For the multi-machine power systems with uncertain parameter which 
can be represented in the form of (4), the designed controller can guarantee the closed systems 
(1) and (16) are globally stable and 1 2 3lim[e (t),e (t),  e (t)] 0

t→∞
=
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Proof: Choosing Lyapunov function 
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From lemma 1, we can obtain that the closed systems (1) and (16) are globally stable 

and 1 2 3lim[e (t),e (t),  e (t)] 0
t→∞

= . 

 
 

5. Simulation Analysis 
This section gives the comparative simulation analysis for the two-machine power 

systems (2) between proposed controller and the method given in [11]. The partial parameters 
for simulation are selected as in Table 1. 

 
 

Table 1 Physical parameters 
 Generator 1 Generator 2  Generator 1 Generator 2 

0iω  1 314.159 0d iT  5.0 7.4 

diI  0.5 0.5 0q iE′  0.85 1.8446 

0m iP  0.99 0.9 iH  0.8 7 

diX  0.3 1.8 qiI  1.0 1.0 

diX ′  0.1 0.3 qiX  0.2 1.0 
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Suppose that the boundary of uncertain parameters are known, generator 1 and 

generator 2 are running at the stable equilibrium point. Dynamic responses of error systems for 
the generator 1 and generator 2 using different controller are shown in Figure 1 and Figure 2, 
respectively. 
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Figure 1. Dynamic responses of error systems for the generator 1  
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Figure 2. Dynamic responses of error systems for the generator 2 
 
 
From Figure 1 and Figure 2, it can be seen that the error systems for the generator 1 

and generator 2 have faster convergence speed using the proposed controller when the 
damping coefficients are unknown.  

  
 

6. Conclusions 
For the generator excitation system with the damping coefficient uncertainty, an 

adaptive controller has been designed via a kind of nonlinear re-parameterization method to 
guarantee asymptotic tracking stability of the system. At the stage of controller design, we can 
design adaptive law and controller separately by applying nonlinear re-parameterization 
method. Simulations results verify the effectiveness of the proposed controller.  
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