
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 22, No. 2, May 2021, pp. 1032~1040

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v22.i2.pp1032-1040  1032

Journal homepage: http://ijeecs.iaescore.com

A comparative study of deep learning based language

representation learning models

Mohammed Boukabous, Mostafa Azizi
MATSI Research Lab, ESTO, Mohammed First University, Oujda, Morocco

Article Info ABSTRACT

Article history:

Received Feb 13, 2021

Revised Mar 24, 2021

Accepted Apr 11, 2021

 Deep learning (DL) approaches use various processing layers to learn
hierarchical representations of data. Recently, many methods and designs of
natural language processing (NLP) models have shown significant

development, especially in text mining and analysis. For learning vector-
space representations of text, there are famous models like Word2vec,
GloVe, and fastText. In fact, NLP took a big step forward when BERT and
recently GTP-3 came out. In this paper, we highlight the most important
language representation learning models in NLP and provide an insight of
their evolution. We also summarize, compare and contrast these different
models on sentiment analysis, and thus discuss their main strengths and
limitations. Our obtained results show that BERT is the best language
representation learning model.

Keywords:

BERT

Deep learning

GPT-2
Natural language processing

Representation models

Sentiment analysis This is an open access article under the CC BY-SA license.

Corresponding Author:

Mohammed Boukabous

MATSI Research Lab, ESTO

Mohammed First University

BP 473 complexe Universitaire Al Qods, Oujda 60000, Morocco

Email: m.boukabous@ump.ac.ma

1. INTRODUCTION
The field of natural language processing (NLP) aims to convert human language into a formal

representation using a range of computational techniques to make it easy for computers to manipulate. NLP

is rapidly advancing due to the growing interest in human-to-machine communications, the big amount of

text data stored in the web, and the powerful computing systems and enhanced algorithms. Deep learning

algorithms and architectures have made remarkable advances within the past few years in the field of text

analytics. NLP market was valued by Mordorintelligence at 10.93 billion USD in 2019, and it is predicted to

reach the worth of 34.80 billion USD by 2025 [1].

Dependently of the objectives, NLP could be processed in two ways: 1) natural language

understanding (NLU) and (2) natural language generation (NLG). NLU involves mapping the input data in

the natural language form into useful representations, and analyzing the multiple aspects of the natural

language [2]. NLG is the process of generating meaningful sentences and phrases in a targeted natural

language, that involves text planning (retrieving related content from the knowledge base), sentence planning
(selecting required words, forming meaningful phrases, and setting tone of the sentence), and text realization

(mapping sentences outlines into sentences structures) [3].

Deep learning algorithms are unable to deal with textual data in their natural language data form

which is typically unstructured information; they require special representation of data as inputs instead.

Usually, natural language text data needs to be converted into internal representations form that DL

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

A comparative study of deep learning based language representation learning… (Mohammed Boukabous)

1033

algorithms can read such as feature vectors, hence the necessity to use representation learning models [4].

These models have shown a big leap during the last years. Their set ranges from the methods that embed

words into distributed representations and use the language modeling objective to adjust them as model

parameters (like Word2vec [5], fastText [6], and GloVe [7]), to recently transfer learning models (like

ELMo [8], BERT [9], ULMFiT [10], XLNet [11], and GPT-2 [12]). These last use larger corpora, more

parameters, more computing resources, and instead of assigning each word with a fixed vector, they use

multilayer neural networks to calculate dynamic representations for the words according to their context,

which is especially useful for the words with multiple meanings.

The rest of this paper is organized as follows: in the next section, we briefly introduce sentiment

analysis, transfer learning, then the most important language representation learning techniques. In Section 3,
we make a comparison between these techniques and discuss our findings.

2. BACKGROUND

2.1. Sentiment analysis

Sentiment analysis (SA) also known as emotion AI or opinion mining is the analysis of feelings

from dematerialized textual sources on large amounts of data (big data), or from images [13]. There are three

usual granularity levels for opinion mining [14]: the document, the sentence and the aspect levels [15]. These

sentiments can express the author’s opinion, his emotional state (when writing his text), or a deliberate sense

of connection (that the author expects to make with readers). Sentiment analysis is widely used in security

intelligence purposes to analyze and synthesize individual reactions to deduce trends and user needs [16].
Indeed, we have already overviewed in [16] learning-based techniques of sentiment analysis for security

purposes.

2.2. Transfer learning

Deep learning models necessitates a lot of data and time while training [17], [18]. Transfer learning

is a technique that benefits from an already trained weight on big datasets for a long period of time and

transfer this knowledge [19] to the targeted model. For instance, the BERT model was trained for 4 days on

16 Cloud TPUs, and the GPT-3 model has 175 billion parameters [20]. The idea of retraining these models

with new data is very expensive, both in terms of time and resources, so here implementing transfer learning

is more practical than retraining.

2.3. Language representation learning models
One of the important tasks in NLP is the learning of vector representations of text, as deep learning

algorithms require representing their input entries in a vector format. For this, we highlight the most

important language representation learning models in NLP and we classified them into two categories: neural

word embeddings and transfer learning techniques, then we compared them as shown in Table 1.

Table 1. Classification of NLP language representation learning models

Context

Direction

Downstream

Model

Base Architecture

U
n

id
ir

ec
ti

o
n

al

B
id

ir
ec

ti
o

n
al

T
as

k
-d

ep
en

d
en

t

T
as

k
-i

n
d

ep
en

d
en

t

S
h

al
lo

w
 n

eu
ra

l

n
et

w
o

rk

2
 l

ay
er

s

b
i-

L
S

T
M

3
 l

ay
er

s

L
S

T
M

T
ra

n
sf

o
rm

er

E
n

co
d

er

T
ra

n
sf

o
rm

er

D
ec

o
d

er

T
ra

n
sf

o
rm

er
-X

L

Neural Word Embeddings Word2vec ✔ − ✔ − ✔ − − − − −

fastText ✔ − ✔ − ✔ − − − − −

Glove ✔ − ✔ − ✔ − − − − −

Transfer Learning Techniques ELMo − ✔ ✔ − − ✔ − − − −

BERT − ✔ ✔ − − − − ✔ − −

RoBERTa − ✔ ✔ − − − − ✔ − −

ALBERT − ✔ ✔ − − − − ✔ − −

ULMFiT ✔ − − ✔ − − ✔ − − −

XLNet − ✔ ✔ − − − − − − ✔

GPT-2 ✔ − − ✔ − − − − ✔ −

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 22, No. 2, May 2021 : 1032 - 1040

1034

2.3.1. Neural word embeddings

a) Word2vec is an unsupervised learning algorithm that consists of a group of related models used for word

embeddings generation. It is based on three-layer neural networks and seeks to learn the vector

representations of words composing a text, so that words that share similar contexts are represented by

close digital vectors [21]. Word2Vec has two neural architectures, called continuous bag-of-words

(CBOW) and Skip-Gram. CBOW receives as input the context of a word, i.e., the terms surrounding it in

a sentence, and tries to predict the word in question. Skip-Gram does exactly the opposite: it takes a

word as input and tries to predict its context [5].
b) fastText is a Facebook's AI library for efficient learning of sentences classification and word

embeddings [6], [22]. It supports multiprocessing during training and allows to create an unsupervised or

supervised learning algorithm to obtain vector representations of words and sentences. fastText uses a

neural network for word embeddings and supports training continuous bag of words (CBOW) or skip-

gram model. It can be used as an initializer for transfer learning.

c) Glove is an unsupervised learning algorithm to obtain word vector representations. This is accomplished

by mapping words in a meaningful space where the distance between words is related to semantic

resemblance. Training is performed using an underlying count-based model on the aggregated global

word to word co-occurrence matrix within a text corpus, and the subsequent representations display

interesting linear substructures in the word vector space. It combines the features of two sets of models,

namely the local context window approaches and the global matrix factorization [7].

2.3.2. Transfer learning techniques

a) Embeddings from language models (ELMo) is a pre-trained biLSTM (bidirectional LSTM) language

model. Word embeddings is calculated by taking a weighted score of the hidden states from each layer of

the LSTM. Weights are learned with downstream model parameters for a particular task, but LSTM layers

are kept constant [8]. Thus, the same word under different contexts can have different word vectors.

b) Bidirectional encoder representations from transformers (BERT) is another language representation

learning model that uses an attention transformers mechanism to learn the contextual relations between

words in a text instead of bidirectional LSTMs to encode context which shows that pre-training

transformer networks on a masked language modeling objective leads to even better performance by

precisely adjusting the transformer weights over a wide range of NLP tasks [9].

c) A robustly optimized BERT pretraining approach (RoBERTa) is an optimized model resulting from
analysis of Google's BERT training model and the identification of several changes to the training

procedure that enhance its performance by Facebook AI and the University of Washington researchers.

Specifically, these researchers used a novel and bigger dataset for training, trained the model over far

more epochs, and removed the next sequence prediction training objective [23].

d) A lite BERT for self-supervised learning of language representations (ALBERT) is a “Lite” version of

BERT, this model architecture includes two parameter-reduction methods: cross-layer parameter sharing

and factorized embeddings parameterization. Furthermore, the proposed method contains a self-

supervised loss for the sentence-order prediction [24].

e) Universal language model fine-tuning for text classification (ULMFiT) is a transfer learning method that

can be applied to NLP. It uses a regular 3-layer LSTM architecture for either pre-training and fine-tuning

tasks. ULMFiT consists of three steps: general-domain language model (LM) pertaining (pertaining
language model on a large general-domain corpus), target task LM fine-tuning (the LM fine-tuned on the

data of the target task), and the target task classifier fine-tuning (fine-tuning the classifier) [10].

f) XLNet is a generalized autoregressive (AR) pertaining method that uses the context word to predict the

next word which is constrained to a unidirectional context, either backward or forward. Although,

XLNet learns from bidirectional context using permutation language modeling. It also influences the

best of both AR language modeling and autoencoders while avoiding their limitations [11].

g) Generative pretrained transformer 2-successor of GPT (GPT-2) follows the OpenAI GPT model with a

few architecture modifications. It consists of a big transformer-based language model with 1.5 billion

parameters, trained with the objective of the prediction of the next word, given all previous words in a

text. And unlike the previous models that require pre-training and fine-tuning, there is no fine-tuning

step for GPT-2 [12].

3. BUILDING MODELS

First, dataset used in experiments was combined from CARER-Emotion, DailyDialog,

CrowdFlower, and Isear to create a rich dataset with 5 labels: anger (5k sentences), joy (26k sentences), sad

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

A comparative study of deep learning based language representation learning… (Mohammed Boukabous)

1035

(13k sentences), fear (3.6k sentences), and neutral (94k sentences). The used texts consist of tweets, dialog

utterances, and short messages as shown in Table 2.

Table 2. Combined datasets for benchmarking

Dataset Year Content
Number of

sentences
Emotion categories

CARER – Emotion

[25]
2018 Tweets 20k

Anger, anticipation, disgust, fear, joy, sadness, surprise, and

trust

DailyDialog [26] 2017 Dialogues 102k Neutral, joy, surprise, sadness, anger, disgust, and fear

CrowdFlower [27] 2016 Tweets 40k
Empty, sadness, enthusiasm, neutral, worry, surprise, love,

fun, hate, happiness, boredom, relief, anger

Isear [28] 1994 Emotion situations 7.5k Joy, fear, anger, sadness, disgust, shame, guilt

3.1. Word2vec and glove

For these algorithms, we started by importing the dataset created previously, then input it into our
neural network model, and we do some preprocessing and tokenization using NLTK to double check that

sentences are properly split into words. We could also add Stopword removal, but steps like stemming or

lemmatization are not needed since words with the same stem can have different meanings. Moreover, we

split the data at first into Data X (contains text data) and Label Y (contains the emotions), and also to random

training subset and validation subset with 80% for training set and 20% for the validation set. Figure 1 shows

the number of data rows for each set and each emotion type. After that, we import pre-trained models

(Word2vec: wiki-news-300d-1M, Glove: Stanford glove.twitter.27B) and create embeddings matrix to map

each word in our corpus to the existing word vector, then we create our neural network pipeline.

a) The first level creates embeddings of words, using a vocabulary size (36866), a maximum length (300),

and a size of embeddings (36867, 300).

b) SpatialDropout1D (0.2).
c) Bi-LSTM layer (128 units) which will receive word embeddings for each token as inputs.

d) Dropout (0.5).

e) A dense layer with a number of neurons equal to the classes of the problem (5 units), a “softmax”

activation function for multi-class classification, and because of this, categorical_crossentropy is used

as the loss function.

f) Finally, we train our model with a batch size of 32, and 20 epochs.

Figure 1. Emotions distribution in training and validation sets

3.2. fastText

We use the ktrain library [29] a lightweight wrapper for TensorFlow 2 with Keras. It is created to

make DL easier to apply for domain experts and beginners. We firstly, import the ktrain library and our

dataset then preprocessing the data using text.texts_from_array of the ktrain library with the following

parameters: class_names=[‘joy’, ‘sadness’, ‘fear’, ‘anger’, ‘neutral’]; preprocess_mode=’standard’ (refers to
fastText mode); maxlen=300 (maximum length of the text). Secondly, we create our model using

text.text_classifier function, and we use the learning rate finder function to find a good learning rate (0.006

appears to be good in our case). Finally, we train our model for 20 epochs using the fit_onecycle function.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 22, No. 2, May 2021 : 1032 - 1040

1036

3.3. BERT, RoBERTa, ALBERT, and XLNet

As of last versions ktrain includes a simplified interface to hugging face transformers for text

classification, permitting users build, train, and deploy their models with hugging face transformers package

in a simple way. Hugging face transformers [30] is a popular Python library that provide pre-trained models

accessible to researchers and end users, it is very useful for a variety of NLP tasks. It supports both PyTorch

and TensorFlow 2 (from late 2019). Therefore, we use it to train these 4 models, as they are supported by

both Hugging Face and ktrain. We used a maximum length of 300, a batch size of 6, 0.00002 learning rate,

and 20 epochs for these algorithms. Models used was: bert-base-uncased (BERT), roberta-base (RoBERTa),
albert-base-v2 (ALBERT), and xlnet-base-cased (XLNet).

3.4. ELMo

After processing our data like Word2vec and Glove, we create an Elmo embeddings layer by using

Tensorflow hub to create a text classifier, then we build a two dense layer (512 units for the first one, and 5

for the second one). Finally, we train our model for 20 epochs using a batch size of 32.

3.5. ULMFiT

After processing our data like Word2vec and Glove, we define the language model and set the

learning rates to 0.0479 using lr_find functions. Then, we fit the model for a few cycles by running one epoch

and then unfreezing and running more epochs to fine-tune it. Next, we use the encoder from the language

model in our classifier with a batch size of 32 and we train it by gradually unfreezing layers and then running
an epoch each time with a learning rate related to the result of the lr_find function. Finally, we unfreeze all

the layers and run the model for 20 epochs.

3.6. GPT-2

We train this model using PyTorch (as backend), an open-source machine learning python library

based on Torch and developed by Facebook [31]. It makes possible to perform necessary tensor calculations

in particular for deep learning. For this, we build a custom PyTorch class Dataset, then we initialize and

tokenize our data using GPT2ForSequenceClassification and GPT2Tokenizer, then we add_special_tokens to

padding it. We also implement the keras CategoricalCrossentropy loss function, due to the very low loss that

we got using the pytorch crossentropyloss loss function, because the PyTorch CrossEntropyLoss accepts

unnormalized scores for each class (not probability). However, Keras categorical_crossentropy uses
from_logits=False by default which means it assumes y_pred contains probabilities (not raw scores). We did

that to have the same loss metric between all our models. Finally, we train our model for 20 epochs using a

batch size of 6 and a 0.00001 learning rate.

4. EXPERIMENTS AND RESULTS

4.1. Hardware characteristics

We performed our experiments on a MARWAN’s high-performance computing (HPC)

infrastructure with the following hardware characteristics:

a) CPU: 2x Intel Xeon Gold 6148 (2.4 GHz/20 cores)

b) RAM: 192 Gb
c) GPU: 2x NVIDIA Tesla P100 (12 Gb) with cuda v10.1

4.2. Evaluation metrics

Having more metrics actually makes it harder to compare language models, especially as indicators

of how well a language model will perform on a specific task are often unreliable.

a) Accuracy: is the fraction of correct predictions among the total number of predictions as shown in (1).

b) Loss: is the difference between the predicted value by the model and the true value. The most common

loss function used in deep learning is cross-entropy, where 𝑝(𝑥) is the true distribution, and 𝑞(𝑥) the

estimated distribution, defined over the discrete variable 𝑥 [32] as shown in (2).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (1)

𝐻(𝑝, 𝑞) = − ∑ 𝑝(𝑥)log (𝑞(𝑥))∀𝑥 (2)

where:

True Positive (𝑇𝑃): is the number of positive class records correctly classified.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

A comparative study of deep learning based language representation learning… (Mohammed Boukabous)

1037

True Negative (𝑇𝑁): is the number of negative class records correctly classified.

False Positive (𝐹𝑃): is the number of negative class records wrongly classified.

False Negative (𝐹𝑁): is the number of positive class record wrongly classified.

a) Precision: is the fraction of correctly identified positive results among all positive results as shown in (3).

b) Recall: is the fraction of correctly identified positive results among the total number of existing positive

class as shown in (4).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4)

c) F1-score: also called F-score is the harmonic mean of the combination between precision and recall

[33], with a value 𝛽 that can emphasize one or the other as shown in (5). The highest possible value of
F1 is 1 and the worst is 0, and guaranteed to be between precision and recall.

𝐹𝛽 = (1 + 𝛽2) ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (5)

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∙𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (6)

where 𝛽 = 1, we have the traditional F-measure or balanced 𝐹1-score as shown in (6).

4.3. Experimental results

This section uses the comparative experiment to summarize, compare and contrast the different NLP

models and thus discuss their main strengths, using sentiment analysis and deep learning techniques as shown

in Table 3. In all our models, we used Tensorboard callbacks, even with the pytorch algorithms (we used

TensorboardX an alternative of Tensorboard for pytorch) to plot the validation accuracy as shown in

Figure 2, and the validation loss as shown in Figure 3. We also use an early stopping of one epoch based on

the validation loss, and we calculate the precision, recall, f1-score of our algorithms using the scikit-learn

precision_recall_fscore_support metrics function.

Table 3. Results of the implemented models
Algorithm Validation

Accuracy

Validation

Loss

Precision Recall F1-score Training Time Number of parameters

Word2vec 0.8452 0.4178 0.8410 0.8453 0.8391 Step: 63 ms

Epoch: 222s

Total: 2472s

Trainable: 440,581

Non-Trainable: 11 060

100

fastText 0.8212 0.4908 0.8167 0.8223 0.8128 Step: 88 ms

Epoch: 311s

Total: 1567s

Trainable: 4 613

Non-Trainable: 8 640

128

Glove 0.8391 0.4412 0.8362 0.8388 0.8297 Step: 245 ms

Epoch: 869s

Total: 3576s

Trainable: 338 181

Non-Trainable: 7 373

200

ELMo 0.8152 0.4810 0.8041 0.8102 0.8064 Step: 7 ms

Epoch: 844s

Total: 3576s

Trainable: 527 369

Non-Trainable: 0

BERT 0.8612 0.3551 0.8589 0.8612 0.8596 Step: 787 ms

Epoch: 247 min

Total: 495 min

Trainable: 109 361 669

Non-Trainable: 0

RoBERTa 0.8622 0.3629 0.8574 0.8533 0.8548 Step: 609 ms

Epoch: 192 min

Total: 579 min

Trainable: 125 240 069

Non-Trainable: 0

ALBERT 0.8558 0.3845 0.8514 0.8537 0.8468 Step: 595 ms

Epoch: 188 min

Total: 567 min

Trainable: 11 687 429

Non-Trainable: 0

ULMFiT 0.8509 0.4315 0.8472 0.8509 0.8476 Step: -

Epoch: 192s

Total: 1920s

Trainable: 62 805

Non-Trainable: 0

XLNet 0.8574 0.3697 0.8562 0.8583 0.8564 Step: 1s

Epoch: 430 min

Total: 1293 min

Trainable: 117 312 773

Non-Trainable: 0

GPT-2 0. 8591 0.3796 0.8559 0.8591 0. 8549 Batch: 67 ms

Epoch: 18 min

Total: 73 min

Trainable: 124 439 808

Non-Trainable: 0

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 22, No. 2, May 2021 : 1032 - 1040

1038

Figure 2. Validation accuracy per epoch scalar
generated by Tensorboard

Figure 3. Validation loss per epoch scalar generated
by Tensorboard

● Word2vec ● fastText ● Glove ● ELMo ● BERT ● RoBERTa ● ALBERT ● ULMFiT ● XLNet ● GPT-2

In this work, we show the application of deep learning-based language representation learning

models for the classification of 5 sentiment types based on a combined dataset. We notice that transfer

learning approaches reach the best average results using the training and validation data in fewer epochs than
word embeddings ones, because it benefits from other base models’ knowledge. Nevertheless, it takes more

time to train, due to the huge number of parameters used. Among these transfer learning approaches, we

conclude that the best one is BERT algorithm because it reaches the best results in almost all our metrics, as

shown in Table 3 and Figure 3, with 35.51% as validation loss, 85.89% as precision, 86.12% as recall, and

85.96% as F1-score in 495 min (2 epochs). For the accuracy, RoBERTa model has the best accuracy as

shown in Table 3 and Figure 2, with 86.22% in 579 min (3 epochs). On the other hand, transformer-based

techniques reach their best result in more time (more than one hour to be trained) compared to the other

models.

By examining these results, it is clear that BERT model performed the best results compared to the

other methods, since it takes everything into account, in order to predict the true meaning of sentences. This

means that transfer learning algorithms can achieve better classification results and learn additional
correlations, but in terms of computation time, it consumes more because more parameters are needed as

shown in Table 3. In fact, most DL architectures use similar computational elements; therefore, it is a

convention to use the number of parameters as a stand-in for complexity, although those networks may have

the same number of parameters but require different numbers of operations (ALBERT for example is

configured to share all parameters including feed-forward network and attention parameters across layers).

The amount of data in the dataset created is still considerably unbalanced regarding the different

types of sentiments. For example, Anger and Fear sentiments in the training and validation sets have very

small amounts of data as shown in Figure 1. Therefore, the models have a limited capability to learn

accurately these sentiments. Detection average of these sentiments is one of the main factors restricting the

overall prediction accuracy.

Despite all efforts, our models tend to overfit. In fact, models trained on text data are subject to
overfitting due to the use of out of vocabulary (OOV) token in NLP-based models. OOV is used to handle

unseen words. There is a high chance of unseen words in NLP models, and overfitting occurs when the

model is trained heavily on the training data but cannot generalize well to unseen data. Those unseen words

generate a scenario where the model is strongly tuned to the training set. Hence, we stop at the epoch when

each algorithm begins to over-fit.

5. CONCLUSION

Applying NLP and deep learning techniques to sentiment analysis has become a popular research
topic lately. Emotions are one of the major aspects of human life that are very useful in various applications.

Our work here focused on deep learning-based language representation learning models, and compared them.

We are more interested in predicting various types of sentiments. After several experiments, we obtained a

reasonable prediction rate for our all models. By analyzing the obtained results, we concluded that BERT is

the best one for sentiment analysis. It was able to successfully predict different types of sentiment and

showed a very good accuracy (86.12%), and the best performance in terms of validation loss (35.51%),

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

A comparative study of deep learning based language representation learning… (Mohammed Boukabous)

1039

precision (85.89%), recall (86.12%) and F1-score (85.96%) metrics in comparison to the other models. As

future works, we will apply the BERT model to analyze sentiments on online messaging (CHAT or social

media) for security purposes.

ACKNOWLEDGEMENT

This research was supported through computational resources of HPC-MARWAN

(www.marwan.ma/hpc) provided by the National Center for Scientific and Technical Research (CNRST),

Rabat, Morocco.

REFERENCES
[1] “Natural Language Processing Market | Growth, Trends,Forecasts (2020-2025),” Mordor Intelligence, 2020.

[Online]. Available: https://www.mordorintelligence.com/industry-reports/natural-language-processing-market.

[Accessed: 15-Aug-2020].
[2] M. A. Covington, “Building Natural Language Generation Systems (review),” Language (Baltim)., 2001.
[3] M. Bates, “Models of natural language understanding,” Proc. Natl. Acad. Sci. U. S. A., vol. 92, no. 22,

pp. 9977–9982, Oct. 1995, doi: 10.1073/pnas.92.22.9977.
[4] T. Mikolov, S. Kombrink, L. Burget, J. Černocký, and S. Khudanpur, “Extensions of recurrent neural network

language model,” in ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing-
Proceedings, 2011, pp. 5528–5531, doi:10.1109/ICASSP.2011.5947611.

[5] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” in
1st International Conference on Learning Representations, ICLR 2013 - Workshop Track Proceedings, 2013.

[6] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word Vectors with Subword Information,” Trans.
Assoc. Comput. Linguist., vol. 5, pp. 135–146, Jul. 2016.

[7] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors for word representation,” in EMNLP 2014 -
2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 2014.

[8] M. E. Peters et al., “Deep contextualized word representations,” in NAACL HLT 2018 - 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies -
Proceedings of the Conference, 2018.

[9] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for

language understanding,” in NAACL HLT 2019 - 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 2019,
doi: 10.18653/v1/N19-1423.

[10] J. Howard and S. Ruder, “Universal language model fine-tuning for text classification,” in ACL 2018 - 56th Annual
Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers), 2018.

[11] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le, “XLNet: Generalized Autoregressive
Pretraining for Language Understanding,” Jun. 2019.

[12] A. Radrof and J. Wu, “language model and unsupervised multitask learning,” OpenAI, 2018.

[13] M. Berrahal and M. Azizi, “Review of DL-Based Generation Techniques of Augmented Images using Portraits
Specification,” 2020, pp. 1-8.

[14] B. Liu, “Sentiment analysis and opinion mining,” Synth. Lect. Hum. Lang. Technol., 2012.
[15] F. A. Vargas and T. A. S. Pardo, “Aspect Clustering for Sentiment analysis,” in Horizons in Computer Science

Research, pp. 213-224, 2020.
[16] M. Boukabous and M. Azizi, “Review of Learning-Based Techniques of Sentiment Analysis for Security

Purposes,” Springer, Cham, pp. 96–109, 2021.
[17] I. Idrissi, M. Azizi, and O. Moussaoui, “IoT security with Deep Learning-based Intrusion Detection Systems: A

systematic literature review,” pp. 1-10, 2020.
[18] I. Idrissi, M. Boukabous, M. Azizi, O. Moussaoui, and H. El Fadili, “Toward a deep learning-based intrusion

detection system for IoT against botnet attacks,” IAES Int. J. Artif. Intell., vol. 10, no. 1, pp. 110-120, Mar. 2021,
doi: 10.11591/ijai.v10.i1.pp110-120

[19] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research on machine learning applications and
trends: algorithms, methods, and techniques, IGI global, pp. 242–264, 2010.

[20] G. Brockman, M. Murati, P. Welinder, and OpenAI, “OpenAI API,” 2020. [Online]. Available:
https://openai.com/blog/openai-api/. [Accessed: 18-Aug-2020].

[21] N. W. Method et al., “word2vec Explained : Deriving Mikolov et al,” arXiv1402.3722 [cs, stat], 2014.

[22] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of Tricks for Efficient Text Classification,” 15th Conf.
Eur. Chapter Assoc. Comput. Linguist. EACL 2017 - Proc. Conf., vol. 2, pp. 427–431, Jul. 2016.

[23] Y. Liu et al., “RoBERTa: A Robustly Optimized BERT Pretraining Approach,” arXiv.org, Jul. 2019.
[24] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “ALBERT: A Lite BERT for Self-supervised

Learning of Language Representations,” arXiv.org, Sep. 2019.
[25] E. Saravia, H.-C. T. Liu, Y.-H. Huang, J. Wu, and Y.-S. Chen, “CARER: Contextualized Affect Representations

for Emotion Recognition,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, 2018, pp. 3687-3697.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 22, No. 2, May 2021 : 1032 - 1040

1040

[26] Y. Li, H. Su, X. Shen, W. Li, Z. Cao, and S. Niu, “DailyDialog: A Manually Labelled Multi-turn Dialogue
Dataset,” arXiv.org, Oct. 2017.

[27] “Sentiment Analysis in Text-dataset by crowdflower | data.world.” [Online]. Available:

https://data.world/crowdflower/sentiment-analysis-in-text. [Accessed: 13-Sep-2020].
[28] K. R. Scherer and H. G. Wallbott, “Evidence for Universality and Cultural Variation of Differential Emotion

Response Patterning,” J. Pers. Soc. Psychol., vol. 66, no. 2, pp. 310–328, 1994, doi: 10.1037/0022-3514.66.2.310.
[29] A. S. Maiya, “ktrain: A Low-Code Library for Augmented Machine Learning,” Apr. 2020.
[30] T. Wolf et al., “HuggingFace’s Transformers: State-of-the-art Natural Language Processing,” arXiv.org, Oct. 2019.
[31] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library,” arXiv, Dec. 2019.
[32] “Cross entropy - Wikipedia.” [Online]. Available: https://en.wikipedia.org/wiki/Cross_entropy. [Accessed: 13-Sep-

2020].
[33] L. Derczynski, “Complementarity, F-score, and NLP evaluation,” in Proceedings of the 10th International

Conference on Language Resources and Evaluation, LREC 2016, 2016.

