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Abstract 
The unique features of shape memory alloys (SMA), including pseudoelasticity and shape 

memory effect, give SMAs a wide application in aeronautical, biomedical, and structural engineering. 
These features stimulate the interest in the development of constitutive models.  In this paper, a 3D finite 
element model of shape memory alloy material model has been developed to incorporate the Drucker – 
Prager model in order to describe the asymmetry of SMA under tension and compression. This paper also 
takes into account the variation of Young’s modulus of the austenite and the martensite.  The development 
and implementation of a robust integration algorithm is presented. The provided numerical simulation 
demonstrates its capabilities. Further studies should be performed to seek quantitative fitting with 
experimental results. 
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1. Introduction 

The shape memory alloys (SMAs) have unique characteristics that remember an 
original ability. At the microscopic level, SMAs present two different crystallographic structures, 
one characterized by austenite (A) and another one by martensite (M). The reversible 
martensitic phase transformation results in two unique effects: the pseudoelasticity (PE) and the 
shape memory effect (SME) [1, 2]. In Figure 1a, whenever σ is positive, the specimen 
completely returns to its original shape with stress-free configuration. Thus the material is 
named PE. In Figure 1b, after unloaded to a stress-free state, residual strains can be observed. 
However, if the material is heated, the specimen eventually returns to the original point A. 
Therefore, the material undergoes an inverse transformation process, which is called SME.  

Due to these unique features (PE and SME), SMA has been applied successfully in 
many different fields such as aeronautical, biomedical, and structural engineering. The 
commercial applications of SMA have stimulated wide interest in the development of accurate 
constitutive models to catch the basic material behavior [3, 4]. Until now, many 1D models [5-8] 
and 3D models [9-10] have been available. Out of these material models, the 3D model 
proposed by Souza et al. [9] is very attractive because of its ability to reproduce all the main 
features relative to shape memory materials in a 3D model. Auricchio later improved this model 
with a Prager-type limit function to catch the characteristic asymmetrical behavior of SMA during 
a tension-compression test [10].  However, the Drucker-Prager Model is much more widely used 
than the Prager-type limit function to define asymmetry. Moreover, the austenite and the 
martensite have a different elastic modulus [11-13]. Thus, the goals of this work are to 
reproduce PE and SME features of shape memory alloy and to cover asymmetric behavior in 
tension and compression with the Drucker–Prager model, as well as variation of elastic modulus 
of the austenite and martensite. 
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Figure 1. a. Pseudoelasticity; b. Shape Memory effect 
 
 
2. The Shape Memory Material Model 

At first, we define a second-order tensor, , as transformation strain to measure the 
strain associated with the phase transformation, particularly with the conversion from austenite 
or multiple – variant martensite to the single variant martensite. Thus,                                     

 

 (1) 
 

 is a maximum value of Norm of  in the phase transformation, in which the material is fully 
transformed.  

Therefore, the stress, , is expressed in terms of strain: 
 

 (2) 
 

regarding that variation of the elastic modulus of the austenite and martensite, we assume that 

 is a linear function of the norm of  : 
 

 (3) 
 

When the material is in its parent phase,  =  A; when the material is in its product 
phase,  =  M. Here the double-struck font refers to the fourth order tensor. 

For convenience, we split the stress as follows: 
 

 (4) 
 

where  is the deviatoric component of  ,  and  is  the trace of . 
During the transformation, the transformation stress is defined as [9] 
 

 (5) 
 

where  is a positive and monotonically increasing function of the 
room temperature T, and the material dependent temperature T0 below which no twinned 
martensite occurs. β is a material parameter. h is a material parameter associated with the 
hardening of the material during the phase transformation. 
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The evolutionary equation for  has the following form: 
 

 (6) 
 
where the limit function F is given in terms of the transformation stress  and the elastic 
domain radius R in form of the Drucker-Prager type 
 

 (7) 
 
where α is material parameter that characterizes the difference between compression and 
tension. 

In the loading stage,   
 

 (8) 
 
In the unloading stage,  
 

 (9) 
 
In the program, the energy increment is computed to judge the loading stage and 

unloading stage. 
Figure 2 illustrates the above flow rule. The flow occurs along the boundaries (F =0), 

while the interior part represents the elastic behavior. 
Thus, we have the following equations to describe the phase transformation. 
 

 (10) 
 
The last equation in Eq. (10) is the classical Kuhn-Tucker conditions to reduce the 

problem as a constrained optimization problem. 
 
 

 
 

Figure 2. Flow rule for inelastic potential 
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3. Research Method 
3.1. Parameters Determined by Uniaxial Test 

Figure 3 illustrates the variation of stresses with strain in the uniaxial test, which can be 

used to determine such parameters as ,  M,  β, T0 , , h, and R. 
 

(1)   and  M can be defined by lines OA  and BC, assuming they are linear elastic. 
(2)   can be determined in Figure 3. 
(3) The onset of phase transformation occurs at A. Thus, 
 

 (11) 
 
Similarly, at E, 
 

 (12)   
 
When we have multiple uniaxial tests with different temperatures T=T1, and T=T2 

respectively, we may determineβ, T0 and R. 
(4) At B, 
 

 (13) 
 

Therefore, h is defined when R, β, T0,  are known. 
 
 

 
 

Figure 3. Typical uniaxial test of SMA 
 
 
3.2. Numerical Aspects 

The phase transformation is divided into three stages: onset transformation, 
transformation, and saturated transformation. 
(1) Onset of transformation 
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             The onset of transformation occurs when F > 0, and  

. Therefore, 
        

 (14) 
              

The governing equation in this stage is written as 
 

 (15)

 

 
              

With unknowns  
              

 

(16) 
              

 (17) 
              

 (18) 
              
             The consistent tangent tensor has the following form with unknowns 

 
              

  (19) 
 

 (20) 
  

The relation between   and   can be written in the form 
 

 (21) 
 

where   is determined by Eq. (20). 
By substituting the above equation into the following equation, 

 

 (22) 
 
             we have, 
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 (23) 
 
(2) Transformation stage 

The transformation stage occurs when F > 0, , and  

. Therefore, 
 

 (24) 
              

The governing equation in this stage is written as 
              

 

(25)

 

 
              
             In the case of loading and unloading, α is positive and negative, respectively. 
With unknowns  
              

 

(26) 
              

Similar to the onset phase, we have, 
              

 
(27) 

              
(3) Saturated Phase 
             In the saturated phase of  transformation, we assume  has no change. Therefore, the 
stress is computed by 
 

 (28) 
              
             and the consistent tangent matrix is computed as 
              

 
(29) 

              
(4) Computation Procedure in the Phase Transformation 

Computation of the phase transformation goes through the following steps: 

1) Elastic stress predictor:   

2) Check for transformation.  (  

3) No: Elastic step:    
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4) Yes: Iteration for    
5) After phase transformation, check . 
6) Yes: Go to saturated phase transformation computation. 
7) No: Update stresses and compute consistent tangent matrix. 

 
 
4. Results and Discussion 

We applied the presented model to reproduce the basic SMA features through 
numerical tests that consider a material with the following properties. 

Young’s modulus of the austenite and the martensite:  
EA=90,000MPa, EM=60,000MPa, Poisson’s ratio: ν=0.30 
Other parameters for the phase transformation: 
R=40MPa, h=600MPa,  β=8.5MPa K-1, T0=250.0K, , α=0.05 
Using a body temperature of T=280.0K, we performed uniaxial isothermal loading.  The 

simulation results are plotted in Figure 4. In the loading part, SMA goes through the elastic 
stage, phase transformation, and saturated phase transformation. While unloading, SMA 
reverses the path back to original point, which shows the PE feature. Please also note that the 
stress at A is 388.7MPa, and -439.5MPa at B, which demonstrates the asymmetry between 
tension and compression. Furthermore, the difference in the Young’s modulus at A and B is in 
accordance with the given material properties (EA=90,000MPa, EM=60,000MPa). 

 
 

 
 

Figure 4. Stress vs strain under uniaxial loading 
 
 
In order to reproduce shape memory effect, we used the following three steps to 

conduct the uniaxial test:  
1) Isothermal stress-driven loading (T=250.0K), up to 200MPa. 
2) Unload back to a stress-free state. 
3) Then, increase the temperature up to 257.50K. 
Figure 5 illustrates that SMA, while loaded to 200MPa, reaches the saturated stage. 

After unloaded to a free-stress state, a residual strain remains. In the third step, with heating to 
temperature 257.50K, the residual strain disappears and SMA returns to the original form, which 
proves shape memory effect. 
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Figure 5. Shape memory effect 
 
 
Finally, with the above material properties, we simulated the perforated square model 

(Figure 6) under two different body temperatures (T=250K, and T=280K).  The vertical direction 
is under tension to strain 0.01 and then returns to zero.  Because of its symmetry, we selected 
one-quarter for the study. 

 
 

 
 

Figure 6. Perforated square model 
 
 
Figure 8 illustrates the strains and stresses of the model with T=280K in the whole 

process. In the loading stage, the stresses and strains increase to maximum value 717MPa and 
0.05, respectively. However, after unloading, they decrease to near zero. The results are 
different for T=250K (Figure 7). After unloading, the model has remaining stresses and strains 
with a maximum stress approximately 100MPa and a maximum strain 0.015. It states SMA has 
different stress-strain relation under different temperatures, which is consistent with results in 
Figures 4 and 5. 
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(a).  loading, stress contour (MPa) 

 

 
(b).  loading, inelastic strain contour 

 
(c) unloading, stress contour (MPa) 

 
(d) unloading, inelastic strain contour 

            
Figure 7. Stress and inelastic strain contour T=250K 

 
 

 
(a) loading, stress contour (MPa) 

 

 
(b) loading, inelastic strain contour 

 
(c) unloading, stress contour (MPa) 

 
(d) unloading, inelastic strain contour 

 
Figure 8. Stress and inelastic strain contour T=280K 

 
 

5. Conclusion 
             We propose a new model for the description of pseudoelastic behavior and shape 
memory alloy effect in a 3D setting. The new model incorporates the SMA model with the 
Drucker-Prager model to describe asymmetry between tension and compression. Moreover, we 
take into account the variation of Young’s modulus of the austenite and the martensite. We 
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provide numerical simulations to illustrate the capabilities of the model at hand. Further studies 
should be performed to seek quantitative fitting with experimental results. 
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