
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 23, No. 2, August 2021, pp. 802~810

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v23.i2.pp802-810 802

Journal homepage: http://ijeecs.iaescore.com

Efficient reconfigurable architecture for moving object

detection with motion compensation

Sridevi N., M. Meenakshi
Departement of EIE, Dr Ambedkar Institute of Technology, Bangalore, Karnataka, India

VTU, Belagavi, Karnataka, India

Article Info ABSTRACT

Article history:

Received Feb 8, 2021

Revised Jun 25, 2021

Accepted Jul 7, 2021

 The detection and tracking of object in large data surveillance requires a

proper motion estimation and compensation techniques which are generally

used to detect accurate movement from video stream. In this paper, a novel

hardware level architecture involving motion detection, estimation, and

compensation is proposed for real-time implementation. The motion vectors

are obtained using 16×16 sub-blocks with a novel parallel D flip flop

architecture in this work to arrive at an optimised architecture. The sum of

absolute difference (SAD) is then calculated by optimized absolute

difference and adder blocks designed using kogge-stone adder which helps in

improving the speed of the architecture. The controller block is designed by

finite state machine model used for synchronization of all the operations.

Further, the comparator and compensation blocks are optimized by using

basic logical elements and the Kogge-stone adder. Finally, the proposed

architecture is implemented on Zynq Z7-10 field-programmable gate array

(FPGA) and simulated using System Generator tool for real time traffic

signal. The hardware and software parameters are compared with the existing

techniques which shows that the proposed architecture is efficient than

existing methods of design.

Keywords:

FPGA architecture

Motion compensation

Motion estimation

Video processing

This is an open access article under the CC BY-SA license.

Corresponding Author:

Sridevi N.

Department of Electronics and Instrumentation Engineering

Dr Ambedkar Institute of Technology

Outer Ring Road, Mallathahalli, Bangalore, Karnataka, India

Email: sridevee@gmail.com

1. INTRODUCTION

The moving object detection algorithms are mainly used in different applications such as

surveillance and traffic monitoring [1]. Among these applications, movement detection and corrections are

mainly used in traffic monitoring systems. For the case of traffic signal, the processing algorithm and

architecture must detect and correct the motion at high speed which requires to implement the algorithm and

architecture in application-specific integrated circuit (ASIC) level hardware. Detecting the target from static

camera is simple and easy than those from the moving camera which involves the estimation and

compensation of global motion caused by the camera, which is mounted on moving platform [2]. Moreover,

block based motion estimation is one of the most important approach to estimate the motion caused by the

movement of the object that are moving in the video stream. Different types of motion estimation algorithms

are proposed to estimate the motion from the input video streams which are then used to detect components

that are in motion. The accuracy of this estimation is directly related to the overall accurate detection. The

three step search (TSS), the four step search (FSS), diamond search, successive elimination search and

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Efficient reconfigurable architecture for moving object detection with motion compensation (Sridevi N.)

803

adaptive search window size [3]-[5] are some of most commonly used motion estimation algorithms, which

generates high quality motion estimation, among those algorithms, full search motion estimation is widely

used to estimate motion due to its various advantages over other estimation technique.

Moreover, due to the complex data flow of most of those techniques, very large-scale integration

(VLSI) level implementations are not possible. Although some VLSI architectures are present to implement

motion estimation techniques, the detection accuracy is low and the overall hardware utilizations are high,

which makes those architecture are not suitable for real time high speed applications [6]. On the other hand,

the full search motion estimation algorithm shows regular data flow which makes it suitable to implement it

through VLSI architecture. In the case of motion estimation the current and reference block in adjacent

frames are used to define motion vector [7], [8], which is used to estimate required motions. The full search

block matching motion estimation is the one most popular motion estimation algorithm. In this case, the

current frames are subdivided into a finite number of sub-blocks, which are there used to find best matched

blocks in the reference frames. However, Motion based target detection rely on camera motion compensation

and correction. Motion estimation and compensation plays an important role in the global motion

compensation. Which requires the motion in the video frames to be estimated and the unwanted motion

induced due to the movement of the camera to be compensated. Hence, to address the facts discussed above

in this paper, an efficient hardware architecture to implement a full search motion estimation algorithm to

detect moving objects and compensate for the ego-motion is presented.

The general block diagram of the motion estimation and global motion compensation is given in

Figure 1 and the operation is explain below. In the preprocessing the input video stream is converted into

number frames which are then converted into different format for hardware processing. The processed frames

is then given to the motion estimation block to find the moving parts in the video. The vectors thus detected

not only contains the movement due to the target present in the video but also the movement caused by the

movement of the sensor that is used to capture the video. Therefore it is required to eliminate the global

motion caused by the camera which is achieved in this work with the addition of compensation block.

Figure 1. Working method of proposed motion estimation and correction

The architecture proposed here is designed using very high speed integrated circuit (VHSIC)

hardware description language (VHDL) language and validate on the FPGA platform. The contribution of

this work is highlighted below:

− At first the controller block is optimized by designing it using simple counter.

− The use of kogge-stone adder improves the speed of operation of the arhitecture.

− Further, to reduce the overall hardware utilizations data reuse technique is used.

− The proposed architecture is evaluated by considering three different traffic scenarios.

− Further, the performance of the architecture is evaluated using true and false detection rate.

Organization: The organization of the remaining topics of this paper is: section 2 explains the novel

hardware architecture for motion estimation, followed by results and discussion in section 3 and finally

conclusion are drawn in section 4.

2. RELATED WORK

Several researchers contributed numerous methods to estimate and compensate the motion, few are

discussed here. Pakdaman et al. [9] presented a scalable fast motion estimation algorithm through low

complex and scalable techniques which uses most popular “test zone (TZ)” for motion estimation algorithm

and is useful to get efficient video coding (HEVC). Here in this paper a single reliable starting point is found

to replace the first step of the TZ search algorithm. The computational complexity, data dependency with

neighboring blocks and deficiency of computational adjustability are the drawbacks of this algorithm. In

paper [10] a comparative study of various motion estimation algorithms and operational cycle for motion

vector search is evaluated by comparing the existing conventional full search algorithm with the new

algorithm developed by them. From the results they concluded that operation cycle of proposed method

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 23, No. 2, August 2021: 802 - 810

804

in [10] is few times smaller than that of full search algorithm but the circuit size is greater than the full search

algorithm. Mogus et al. [11] discussed the process of motion estimation which generates motion vectors to

determine the compensation from prediction frame. Here, to overcome the drawbacks of the algorithm a

block matching motion estimation algorithm is also used. In paper [12] the novel architecture for low-latency

and high throughput programmable motion estimator is presented. Here motion is estimated by applying full-

search and hierarchical search algorithms. Two-step search on gray coded video frames for motion estimation

is proposed in [13]. In this method motion is estimated using two steps. Firstly the basic motion vectors are

calculated using most significant bits of gray coded bit planes. In the second stage motion vectors are

obtained by using an adaptive search pattern.

Gharavi and Mills [14] proposed a novel block-matching motion estimation to find the best match

by considering the behavior of individual pels which plays more active role in estimating the motion and

results in better performance than mean-absolute-difference. Bhattacharyya et al. [15] are worked on block-

based motion estimation technique and implemented six-level nested do-loop full-search block-matching

motion estimation algorithm. Here the algorithm is implemented in two phases. In the first phase using 25

movie frames without breaking them into macro-blocks and in the second phase the same is implemented

after breaking into the respective macro-blocks. Efficient motion estimation algorithm using only diamond

search grid to meet the requirement of portable and low power device is presented in the paper [16] using

sub-sampling and pixel truncation to reduce the complexity, so they concluded that proposed diamond grid

search (DGS) algorithm takes less number of search point and have comparable peak signal to noise ratio

(PSNR) and bit-rate as compared to other state of the art motion estimation algorithm. Reference [17]

Addressed the problem of area efficiency of carry select adder by avoiding the use of ZFC and multiplexer.

Discrete cosine transform-based motion-estimation (DXT-ME) is presented in the paper [18], this algorithm

provides the exact displacement of the object of interest, making it suitable for fine-grained tracking.

Boonthep et al. [19], parallel hardware architecture for computing ME by using scale-invariant-feature-

transform (SIFT) is proposed. Here in this paper the authors applied fast fourier transform (FFT) to reduce

the complexity in SIFT algorithm also the features that are detected are fully invariant to image scaling and

rotation. The proposed architecture will increase the speed of operation due to the use of koggestone adder

and the data reuse technique will optimize the overall architecture.

3. PROPOSED METHOD

The hardware architecture proposed in this paper to implement motion estimation is shown in Figure 2.

The architecture mainly includes different types of memory unit, absolute difference block, adder array bock,

comparator, and controller unit respectively the 16×16 block size is used as current block to get the motion

vectors which are stored in the external memory blocks, which is capable of storing entire frame until it is

processed. The current block and the subdivided computational block obtained by dividing the frame into

number of sub-blocks are routed through the demux block to distribute them in to three memory blocks

namely SUBM1, SUBM2 and SUBM3 respectively. These memories store current sub matrix and adjacent

sub matrix pixel values. The stored pixel values are then used to calculate the successive approximation

differences (SAD) through which the motions are detected and corrected through compare and correction

block. The motion features stored in the motion vector memory are then used as references to the next frame.

The controller block is used to control the overall operation by controlling the data-path of the architecture.

Figure 2. Hardware architecture of motion estimation and correction

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Efficient reconfigurable architecture for moving object detection with motion compensation (Sridevi N.)

805

3.1. Preprocessing

The direct video frames are not compatible and portable for hardware processing due to different

formats of videos existing. As a result, it is necessary to convert it into a number of frames which are

performed by system generator tool with the help of MATLAB tool. It is normally used to convert the input

video into a finite number of frames of standard size.

3.2. Controller

The controller block is used to control the overall data flow either by activating or deactivating the

required blocks. In the beginning of the operation, the select line of the DEMUX is set to 0 which allows the

first sub-matrix pixels to enter in sub-memory 1. After 16 clock cycles, the absolute difference block starts

calculating the absolute difference values from the current block. At this time, the controller block selects the

sub-memory 2 through DEMUX block. The absolute difference of two sub-matrixes starts calculating values

till 49th clock cycle and the final SAD values starts at 50th clock cycle and it is implemented by simple

counter logics.

The hardware architecture to design the controller block is given in Figure 3 which consists of counter,

decision maker block and encoder block. The counter block starts counting at every rising edge of the clock

pulse when reset (rst) signal is high which is then used by decision maker block to decide the correct sequence

of sub-blocks to be activated and then this is encoded by the encoder block to activate the processing elements

in correct sequence. After the motion vector calculation of three consecutive 16×16 sub-matrices are completed,

the entire controller is reset to its initial condition and the operation starts from the beginning.

Figure 3. Proposed controller architecture

3.3. Motion detection

The motion vectors are used to detect the movement from any video sequence using absolute

difference, array of adders and decision maker block.

3.3.1. Absolute difference

To calculate the absolute difference between neighboring frames, it is essential to store the pixel of

these frames into temporary memory for processing and the architecture is given in Figure 4.

Figure 4. Temporary storage of frames

The shift register architecture designed using D flip-flops are mainly used for this purpose. The

architecture which is used to store the frames are given in Figure 3 where the D_FF block is used to store the

pixel values which are then used to calculate the absolute difference. The parallel architecture of the D_FF is

an advantage for fast processing of the data compared to existing techniques.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 23, No. 2, August 2021: 802 - 810

806

The absolute difference values between the current block and adjacent blocks are calculated in this

block. For motion estimation purpose, it is essential to perform the absolute difference (AD) at block level

which requires a high speed subtractor. As a result, the normal subtractor architecture is replaced by the

kogge-stone adder [20] in binary arithmetic. The equation for absolute difference is given below in (1):

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝐴𝐷) = |𝐴 − 𝐵| (1)

Where, A and B are the pixels of current and reference frame respectively.

The hardware architecture is used to obtain the absolute difference is shown in the Figure 5 where

the use of kogge-stone adder resulted in optimization of the entire architecture. The subtraction is modeled by

addition in binary arithmetic which is then used to find the sign of the resultant data through concatenation

block. Depending upon the output of the concatenation block, the MUX block send the resultant value or 2’s

complement of the resultant value to the output which is the absolute difference value of both input signal.

For proper optimization, the 2’s complement is implemented by kogge-stone adder block only.

Figure 5. Hardware architecture of absolute difference

3.3.2. Adder array

The Kogge-Stone adder [20] architecture is used to build the adder array in parallel fashion.

3.4. Decision block

The basic comparator block is used to compare the matched frame from stored vectors in the motion

vector memory block for accurate motion vector. It is normally done through logical comparator block and

the hardware architecture of motion estimation is given in Figure 6.

Figure 6. Hardware architecture of motion detection

3.5. Local memory

The pixels present in search area matrix are stored in the local memory unit which consists of three

memory blocks namely SUBM1, SUBM2 and SUBM3 respectively. These memories are used to store the

three consecutive 16×16 blocks through DEMUX block through select line which is controlled by counter

block. The data enters as pixels of 16 bits in row by row from top to bottom direction through counter logic.

3.6. Motion correction

The motion vector of all overlapping blocks present in the corresponding frames must be stored in a

memory block for further processing and its architecture is given in Figure 7. The motion vector memory

block is used to store the calculated motion vectors from the SAD data through compare and compensate

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Efficient reconfigurable architecture for moving object detection with motion compensation (Sridevi N.)

807

block. It is implemented by block RAM available on the FPGA board. The size of the RAM block depends

upon the frame size and the SAD matrix size. In many cases the use of simple comparison technique

introduces some false detection which has to be removed by correction block. The N×N blocks are used to

interpolate 2N×2N overlapped blocks.

The modules for estimating forward motion, bidirectional motion and smoothing spatial motion are

the same as those in the original algorithm [21] with modification of motion compensation architecture with

counter controlled registers instead of RAM controlled. The novel architecture used to implement the motion

compensation through interpolation [21] is given in Figure 8. The motion vectors obtained are then stored

into another temporary memory which are then used for compensating the motion through interpolation array

to generate the corrected motion vector. The entire architecture is controlled by the controller block for

proper synchronization.

Figure 7. Hardware architecture of motion vector

memory

Figure 8. Hardware architecture of motion correction

4. RESULTS AND DISCUSSION

The motion estimation and correction architecture are designed using VHDL and validated the

design using Xilinx EDA tool for Zynq Z7-10 platform.

4.1. FPGA implementation

The architecture proposed in this work is implemented on digital Zynq Z7-10 FPGA. The standard

VHDL coding technique is used to design the architecture and is simulated using Xilinx 14.5 design suite

tool. The hardware utilization of the proposed motion estimation and compensation architecture is given in

the Table 1 with its intermediate components.

Table 1. Hardware utilizations of motion estimation and correction architecture
Parameters SAD Comparator Control Memory Total Module

FPGA Zynq Z7-10 (xc7z010-1clg400c)

Slice registers 6144 135 21 6154 12450
Slice LUTs 6299 146 460 2184 908

LUT-FF pairs 2910 86 12 1850 517

Maximum frequency (MHz) 1432.665 321.404 650.347 707.214 321.404

The System generator tool is used to input the real time video in the designed architecture, through

standard interfacing methods. Here the input video is fed to the FPGA using image processing toolbox in

MATLAB. The motion vectors thus calculated on FPGA are then used by the MATLAB tool to insert boxes

for better visualization.

4.2. Performance analysis

The performance of the proposed architecture in terms of hardware utilizations and detection

accuracy are discussed as follows.

4.2.1. Simulation

The designed architecture is simulated by taking three different scenarios low density traffic, high

density traffic and video steam captured using moving camera to evaluate the detection accuracy of the

system. The statistical parameters such as detection accuracy, true detection rate, false detection rate and not

detected rate [22] are calculated to validate the designed architecture.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 23, No. 2, August 2021: 802 - 810

808

Figures 9-11 shows one random frame of the entire simulation for normal traffic, dense traffic and

video taken from moving camera respectively. From the calculation it is found that the true detection rate is

93.79% and false detection rate of 4.21%. Under dense traffic condition the true detection rate of 93.01% and

the false detection rate is 13.02% is obtained by randomly selecting the frame from the entire simulation.

However, the video taken from moving camera shows the true detection rate of 92.93% and false

detection rate of 11.91 %. The randam frame taken from the entire simulation result. Evaluation of various

parameters are given in Table 2. Higher value of true detection rate indicates the better detection accuracy.

Low value of not detected rate indicates correct detection. Through the analysis it is observed that the

developed algorithm is capable of detecting the objects that are in motion.

Figure 9. Simulation results of normal traffic flow

Figure 10. Simulation results of normal dense flow

Figure 11. Simulation results of detection when the camera is in motion

Table 2. The performance parameters with respect to normal traffic scenario
Different Senario True Detection Rate False Detection Not Detected Rate

Normal 93.79% 4.21 % 3.11%

Dense 93.01% 13.02 % 6.02%

Moving Camera 92.93% 11.91 % 9.55%

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Efficient reconfigurable architecture for moving object detection with motion compensation (Sridevi N.)

809

4.2.2. Comparisons with existing techniques

The detection accuracy of the proposed architecture is compared with the existing architectureto

check the accuracy which is given in Table 3. From the table it can be seen that the proposed architecture is

able to detect the moving object accurately than existing.

Table 3. Detection accuracy comparisons of proposed architecture with existing
Authors Techniques Maximum Accuracy

Chih-Yang et al. [23] Image Bit-Planes for Real-Time Video Surveillance 86.30%

Yu and Fenfen [24] Optical flow 89.00%
Sridevi et al. [25] Gaussian Mixture Model with Morphological filter 93.18%

Haidi Zhu et al. [26] YOLO 88.59%

Proposed Architecture SAD Based Comparison 93.79%

The hardware utilizations of the proposed architecture are compared with the proposed motion

estimation and compensation architecture presented by Jingyan and Peng [27] which is given in the Table 4.

The architecture presented by Jingyan and Peng [27] was implemented on Zynq FPGA with high level

programming method (C/C++ language) which are not useful to design parallel optimized hardware

architecture. On the other hand, the proposed architecture is implemented using HDL language with

architectural modification to get optimized hardware utilizations

Table 4. Hardware comparisons of proposed architecture with existing
Parameters Jingyan and Peng [27] Jaechan Cho et al. [28] Proposed architecture

FPGA Zynq-7 Virtex-5 Zynq-7
Slice Register 12767 13245 12450

Slice LUTs 37761 ---- 908

LUT-FF Pairs 27875 ---- 517
Maximum Frequency (MHz) 128 200 321.404

5. CONCLUSION

Motion estimation and compensation is one of the most important method to detect and correct the

global motion caused by the camera. Further, many computer vision applications demand high speed, less

hardware utilization in the architecture. In this paper, considering the full search block based method an

efficient hardware architecture for motion estimation and compensation for proper object detection is

developed. Further, the architecture is evaluated by considering three different traffic conditions. To optimize

the hardware utilization, the sum of absolute difference architecture is optimized by using kogge-stone adder.

The counter logic is used to optimize the controller architecture by adopting finite state machine (FSM)

modeling there by 12450 slice register and 517 LUT-FF pairs are used to develop the architecture. The entire

architecture is implemented on Zynq-Z7-10 FPGA. The experimental validation proved that the accuracy of

93.79% and the operating speed of 321.404 which is high compared with some of the existing techniques.

REFERENCES
[1] Zhu, J., Wang, Z., Wang, S., and Chen, S., “Moving Object Detection Based on Background Compensation and

Deep Learning,” Symmetry, vol. 12, no. 12, pp. 1-12, 2020, doi: 10.3390/sym12121965.

[2] Bhattacharya, S., Idrees, H., Saleemi, I., Ali, S., and Shah, M., “Moving Object Detection and Tracking in Forward

Looking Infra-Red Aerial Imagery,” Machine Vision Beyond Visible Spectrum, pp. 221-252, 2011,

doi: 10.1007/978-3-642-11568-4_10.

[3] Basha, S., and Kannan, M., “Literature survey on motion estimation techniques,” International Journal of

Engineering & Technology, vol. 7, no. 2.12, p. 394, Apr. 2018, doi: 10.14419/ijet.v7i2.12.11358.

[4] Verma, N., Sahu, T., and Sahu, P., “Efficient motion estimation by fast three step search algorithms,” International

Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, vol. 1, no. 5,

pp. 380-385, Nov. 2012.

[5] Ahmadi A. and Azadfar M. M., “Implementation of Fast Motion Estimation Algorithms and Comparison with Full

Search Method in H.264, ” IJCSNS International Journal of Computer Science and Network Security, vol. 8, no. 3,

pp. 139-143, Mar. 2008.

[6] Sanz C., Garrido M. J., and Meneses J. M., “VLSI Architecture for Motion Estimation using the Block-Matching

Algorithm,” Proceedings of the European conference on Design and Test, 1996, pp. 310-314,

doi: 10.1109/EDTC.1996.494318.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 23, No. 2, August 2021: 802 - 810

810

[7] Yousaf, A., Hanif, M. S., Khan, M. J., Iqbal, M., and Khurshid, K., “Robust and computationally efficient online

image stabilisation framework based on adaptive dual motion vector integration,” IET Computer Vision, vol. 13,

no. 5, pp. 461-468, 2019, doi: 10.1049/iet-cvi.2018.5368.

[8] Tang, J. W., Shaikh-Husin, N., Sheikh, U. U., and Marsono, M. N., “FPGA-Based Real-Time Moving Target

Detection System for Unmanned Aerial Vehicle Application,” International Journal of Reconfigurable Computing,

vol. 2016, no. 3, pp. 1-16, 2016, doi: 10.1155/2016/8457908.

[9] Pakdaman, F., Hashemi, M. R., and Ghanbari, M., “A low complexity and computationally scalable fast motion

estimation algorithm for HEVC,” Multimedia Tools and Applications, vol. 79, pp. 11639-11666, 2020,

doi: 10.1007/s11042-019-08593-y.

[10] Bnadou, R., Hiramori, M., Iwade, S., Makino, H., Yoshimura, T., and Matsuda, Y., “A Study on Motion Estimation

Algorithm for Moving Pictures,” 2016 IEEE 5th Global Conference on Consumer Electronics, pp. 1-3, 2016,

doi: 10.1109/GCCE.2016.7800439.

[11] Mogus, F. A., Liu, X., and Wang, L., “Evaluation of the Performance of Motion Estimation Algorithms in Video

Coding,” In The 2nd IEEE International Conference on Information Science and Engineering, 2010,

pp. 3693-3696, doi: 10.1109/ICISE.2010.5691643.

[12] Shu, Q., and Chen, H., “An efficient implementation of motion estimation algorithms,” Proceedings of 4th

International Conference on Solid-State and IC Technology, 1995, doi: 10.1109/ICSICT.1995.503394.

[13] Chatterjee, S. K., and Vittapu, S. K., “An Efficient Motion Estimation Algorithm for Mobile Video Applications,”

2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP),

2019, pp. 1-5, doi: 10.1109/ICACCP.2019.8882948.

[14] Gharavi H. and Mills M., “Blockmatching Motion Estimation Algorithms,” IEEE Transactions on Circuits and

Systems, vol. 37, no. 5, pp. 649-651, 1990, doi: 10.1109/31.55010.

[15] Bhattacharyya, D., Chakrabarti, A., and Misra, S.,“Design and Simulation of Parallel Algorithms for Motion Estimation,”

10th IEEE International Conference on Information Technology, 2007, pp. 29-34, doi: 10.1109/ICIT.2007.44.

[16] Singh K., and Ahamed, S. R., “A New Motion Estimation Algorithm for High Efficient Video Coding Standard,”

2015 Annual IEEE India Conference (INDICON), 2015, pp. 1-5, doi: 10.1109/INDICON.2015.7443614.

[17] Tapasvi, B., Sinduri, K. B., Lakshmi, B. G. S. S. B., and Kumar, N. U., “Implementation of 64-Bit Kogge Stone

Carry Select Adder with ZFC for Efficient Area,” In 2015 IEEE International Conference on Electrical, Computer

and Communication Technologies (ICECCT), 2015, pp. 1-6, doi: 10.1109/ICECCT.2015.7226154.

[18] Mishra P., Apoorva R., Parvatikar B. B., and Nair L., “Architectures for FPGA-Based Implementation of Motion

Estimation of Dynamic Obstacles for Autonomous Robot Navigation,” 2011 Third International Conference on

Computational Intelligence, Communication Systems and Networks, 2011, doi: 10.1109/CICSyN.2011.68.

[19] Boonthep N., Chamnongthai K., and Phensadsaeng P., “A FPGA-based SIFT Architecture for Motion Estimation in

Video Coding,” 2018 Global Wireless Summit (GWS), 2019, pp. 383-388, doi: 10.1109/GWS.2018.8686403.

[20] Xiang L. M., Zabidi M. A., M., Awab, A. H., and Ab Rahman, A. A. H., “VLSI Implmentation of a Fast Kogge-

Stone Parallel-Prefix Adder,” Journal of Physics: Conference Series, 2018, vol. 1049, no. 1, pp. 1-10, doi:

10.1088/1742-6596/1049/1/012077.

[21] Zhang D. Y., Ji Y. T., and Wang X. M., “A Weighted Motion Compensation Interpolation Method for Improving

Side Information in Distributed Video Coding,” Applied Mechanics and Materials, vol. 519, pp. 672-676, 2014,

doi: 10.4028/www.scientific.net/AMM.519-520.670.

[22] Sridevi N. and Meenakshi M., “Efficient Moving Vehicle Detection Algorithm for Various Traffic Conditions,”

International Journal of Recent Technology and Engineering (IJRTE), pp-6069-6076, Sep. 2019,

doi: 10.35940/ijrte.C5619.098319.

[23] Chih-Yang L., Zhi-Yao J., and Wei-Yang L., “Image Bit-Planes Representation for Moving Object Detection in

Real-Time Video Surveillance,” 2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-

TW), 2016, pp.1-2, doi: 10.1109/ICCE-TW.2016.7520949.

[24] Zhang Y. and Wang F., “Improved optical flow algorithm of moving object Detection,” 2015 Fifth International

Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), 2016,

pp.196-199, doi: 10.1109/IMCCC.2015.48.

[25] Sridevi N., and Meenakshi M., “Efficient Movement Compensation and Detection Algorithm using Blob Detection

and Modified Kalman Filter,” 2020 5th International Conference on Communication and Electronics Systems

(ICCES), 2020, pp-264-268, doi: 10.1109/ICCES48766.2020.9138031.

[26] Zhu H., Wei H., Li B., Yuan X., and Kehtarnavaz N., “Real-Time Moving Object Detection in High-Resolution

Video Sensing,” Sensors, vol. 20, no. 12, pp. 1-15, 2020, doi: 10.3390/s20123591.

[27] She J. and Du P., “FPGA-Based Motion Estimation Algorithm Optimization,” Microprocessors and Microsystems,

vol. 80, pp. 1-13, 2021, doi: 10.1016/j.micpro.2020.103555.

[28] Cho J., Jung Y., Kim D., Lee S., and Jung Y., “Moving Object Detection Based on Optical Flow Estimation and a

Gaussian Mixture Model for Advanced Driver Assistance Systems,” Sensors, vol. 19, no. 4, pp. 1-14, 2019,

doi: 10.3390/s19143217.

