
TELKOMNIKA, Vol. 11, No. 7, July 2013, pp. 3759 ~ 3766
e-ISSN: 2087-278X
 � 3759

Received January 26, 2013; Revised April 15, 2013; Accepted April 28, 2013

An Efficient Algorithm for Mining Top-K Closed
Frequent Item sets over Data Streams over Data

Streams

Mao Yimin*1, Xue Xiaofang2, Chen Jinqing1
1School of Applied Science, Jiangxi University of Science and Technology, Gan Zhou, Jiangxi,

0797-8312636
2Chong Qing Communication Institute, Chong Qing, China, 023-84178972

*Corresponding author, e-mail: mymlyc@163.com*1, xxf123@163.com2

Abstract
Focusing on problems such as complexities existing in compressed storage structures of the

current data stream Top-k closed frequent item sets algorithm and inaccuracy in the algorithm, the paper
puts forward an algorithm of MTKCFI-SW by designing compact prefix pattern trees for compression and
storage of effective information in data stream sliding windows. The CFP-tree, capable of promptly
capturing newly added data stream information under circumstances of any sliding window sizes, does not
need to fix the sizes of sliding windows and thus improves the flexibility of this algorithm. Research in
dynamic determination of mining threshold and pruning threshold also helps to improve accuracy of this
algorithm by adopting an effective approach in mining Top-k closed frequent item sets in the environment
of data stream.

Keywords: data streams, Top-K closed frequent item sets, sliding window, data mining

Copyright © 2013 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

In recent years, mining of data streams has becomes one of the most important
research issues of data mining. Data streams are found in a lot of applications including network
monitoring and traffic management, sensor network monitoring, transaction analysis of large
electronic-commerce, stock tickler monitoring, web click steam monitoring and mining. However,
new challenges have emerged. Due to their vast sizes, some stream types should be mined fast
before being deleted forever. Generally, the alphabet is too large to keep exact information for
all elements. Conventional database and mining techniques, though effective with stored data,
are deemed impractical in this setting.

Efficient stream mining methods based on a user-specified minimum support threshold
min_sup have been studied extensively. However, the setting of minimum support threshold is
quite tricky and it leads to the following problem that may hinder its popular use. There are two
challenges of minimum support based stream data mining: (1) if the value of minimum support
threshold is set to be too small, the pattern mining algorithm may lead to the generation of
thousands of patterns; (2) if the value of minimum support constraint is set to be too big, the
mining algorithm may often generate a few patterns or even no answers. As it is difficult to
predict how many patterns will be mined with a user-defined minimum support threshold, the
top-K pattern mining has been proposed.

Top-K frequent item sets mining on definite database were studied in [1, 6], but they did
not have counterparts in the sliding window model. Golab [2] presented an algorithm
FREQUENT for detecting the Top-K frequent items in sliding windows defined over packet
streams. It works in the jumping window model and performs well with bursty TPC/IP streams
containing a small set of popular item types, but it deals with only one-item while cannot be
employed in multiply item sets situations. Closed frequent item sets mining over data streams
were studied in [7, 8, 3], and algorithms for frequent item sets mining in sliding windows were
presented in [4, 9]. However they all do not resolve the basic problems of setting a support
threshold. To the best of our knowledge, document 5 is little progress made thus far to explicitly
address the problem of Top-K closed frequent item sets mining in sliding windows. Three

 � e-ISSN: 2087-278X

TELKOMNIKA Vol. 11, No. 7, July 2013 : 3759 – 3766

3760

optimal strategies are exploited to reduce time and space consumption of the algorithm: (1)
pruning impotent nodes in the newest basic window whenever a sliding window updates, (2)
promoting support threshold during mining process dynamically, and (3) adjusting potency
parameter adaptively. But it exists three problems in the algorithm: (1) fixing the size of the
sliding window, (2) generating too much price to maintaining nodes, (3) not being enough
precise to define mining threshold and pruning threshold.

Our contribution is devising efficient algorithms for finding the Top-K closed item sets
within the current sliding window. In this paper, three strategies are presented to reduce the
mining time and space consumption dramatically, and experimental study validates their
effectiveness and efficiency.

2. Preliminaries

A data stream, DS = [W1, W2, …, WN], is an infinite sequence of basic windows, where
each basic window Wi, ∀ i = 1, 2, …, N, is associated with a window identifier i, and N is the
window identifier of the “latest” basic window WN. A basic window consists of a fixed sized
number of transactions denoted by <T1, T2,…, Tk,…>. Eeach transaction is composed of a set of
items (named item set) denoted by Xi(i=1, 2,…, p). The size of a basic window Wi is denoted by
|W i|.

Because it is unrealistic to store all the data into limited main memory or even in
secondary storage, the single-pass algorithm for mining data streams has to sacrifice the
correctness of their analytical results by allowing some frequency errors. Therefore, the true
support of an item set Xi is the number of transactions of the stream containing the item set as a
subset, and denoted by ' ()

sw i
f x . The estimated support of an item set Xi is the estimated true

support stored in the summary data structure, and denoted by ()
sw i

f x . Note that 1 ≤ ()
sw i

f x ≤
' ()

sw i
f x .

In this paper, the item sets embedded in the data streams can be divided into three types:
frequent item set, significant item set, and infrequent item set. An item set Xi is called frequent
if () () | |

sw i
f x s N> − ε , where s is a user-defined minimum support threshold in the range of [0, 1],

ε is a user specified maximum support error threshold in the range of [0, s] and |N| is the
number of transactions in sliding window. An item set Xi is called significant if () | |

sw i
f x N> ε . An

item set Xi is called infrequent if () | |
sw i

f x N≤ ε .

XpY denotes that lexicographical-order of item X is lower than that the item Y in this
paper.

3. Algorithm Implement
3.1. The Structure of CFP-Tree

The current frequent pattern tree is an improved FP-tree [10] to adapt for incrementally
mining the current frequent patterns over an online data stream. Compared with an FP-tree, a
CFP-tree has the following improvements:

(1) All items in the CFP-tree are sorted in lexicographical-order. In contrast, the frequent
items in the FP-tree are sorted in their frequency descending order.

(2) Each node in an FP-tree consists of three fields: item-name, count, and node-link.
But in a CFP-tree, besides three fields, another field, item-sign (also means the sign of item)
registers the type of node, which 0 is frequent item, 1 is significant item and 2 is infrequent item.

(3) An item-list table is used to index the CFP-tree. All items of a data stream are
maintained in the table and sorted in lexicographical-order. Each entry in the table consists of
four fields, item-name, count, item-sign and head of node-link, where head of node-link is a
pointer pointing to the first node in the CFP-tree carrying the item-name.

(4) Each entry in the tid-list consists of two fields: tid and pointer. Tid registers the
number of transaction. Pointer is a pointer pointing the last item of each branch in the CFP-tree.

3.2. Mining Algorithm of Top-k Closed Frequent Item sets in Sliding Windows

For the sake of effectively mining Top-k closed frequent item sets in sliding windows of
data stream, data steam information of the current windows is initially stored in CFP-tree by

TELKOMNIKA e-ISSN: 2087-278X �

An Efficient Algorithm for Mining Top-K Closed Frequent Itemsets over … (Mao Yimin)

3761

algorithm and arranged by descending order in terms of the support of each item in Item-list.
The minimum support threshold value is set in accordance with Theorem 1. Subsequently, the
current windows are filtered in order to reduce the maintenance cost of CFP-tree by deleting
numerous infrequent items from CFP-tree. Ultimately, the mining of Top-k closed frequent item
sets in CFP-tree can be conducted. Detailed procedures are illustrated as shown in Algorithm 1.

Each item in Item-list is arranged by descending order in terms of its support. Let us
suppose Xk is the Kth item in terms of support by descending order, in which Xi∈ Item-list (I = 1,
2, …, k), Supsw(Xk) is the minimum support of item Xk.

Theorem 1 In the CFP-tree structure, if ix Item list∀ ∈ −
,

() ()sw i sw kSup x Sup x≥
, then

the number of closed frequent item sets produced by the item Xi is larger than that of Top-k
closed frequent item sets.

Proof the closed frequent item sets produced by item Xi can be classified into two
cases:

(1) ∵ item
i CFIx ⊂ ∴ Supsw(Xi)≥Supsw(Xk)

 From the definition of closed frequent item sets, it can be inferred that Xi might produce item
sets:

(, 1, 2, ...,)
ji j

CFI x Item list j kx x ∈ − =∪ ⊂ () ()
sw i j sw k

Sup x x Sup x∪ ≥

That is to say, the number of closed frequent item sets produced by Xi is equivalent to
that of the item sets Xi and Xi∪Xl.

(2) item
li CFIxx ∪ ⊂ , and () ()

sw i l sw k
Sup x x Sup x∪ ≥ (

l
x Item list∈ − 1 , 2 , . . .)l k=

From the definition of closed frequent item sets, it can be inferred that item set Xi∪Xl
might produce item sets:

(, 1, 2, ...,)
pi l p

CFI x Item list p kx x x ∈ − =∪ ∪ ⊂

That is to say, the number of closed frequent item sets produced by item Xi∪Xl is
equivalent to that of the item sets Xi∪Xl and Xi∪Xl∪Xp.

As can be inferred from Theorem 1, in MTKCFI-SW algorithm, the minimum support of
the current sliding window is determined by the minimum support of the kth item Xk in Item-list,
which is referred to as “Dynamic Determination of Mining Threshold” in the paper. In this way,
the mining threshold and pruning threshold can be immediately determined, which are
exempted from the influence of any parameters and can fairly increase precision of the
algorithm.
 Algorithm 1 MTKCFI-SW
Input: the current data stream transaction
Output: Top-k closed frequent item sets in current sliding window

Call Updata CFP-tree()；
Call Pruning CFP-tree()；
Call Ming TPCFI()；

3.3. Incremental Updata
The information in sliding window over data stream is constantly changed. When new

transactions in current window arrive in sliding window, the transactions in obsolete window are
deleted from sliding window. Thus, the newly generated transaction can be stored immediately
in the CFP-tree according to lexicographical-order as it arrives. The procedure of incrementally
updating a CFP-tree is shown in algorithm 2.

Algorithm 2 Updata CFP-tree
Input: the current transaction in the data stream TC, a user-specified minimum support threshold s∈ (0,1),
and a user-defined maximum support error threshold ε∈ (0,s);
Output: A CFP-tree generated so far;

Get the projection TC,,of TC；
for each item Xi∈TC, do

 if Xi∉Item-list then
 Create a new entry of form(xi,,1,2,node-link) into the Item-list;
 else

 Xi.count= Xi.count+1；
Endif

 if CFP-tree has a child node with itemname such that y.itemname=xi.itemname then
 y.count=y.count+1；

 � e-ISSN: 2087-278X

TELKOMNIKA Vol. 11, No. 7, July 2013 : 3759 – 3766

3762

else
 Create a new entry of form (xi,,1,2,node-link) into the CFP-tree;

 endif
endfor
Order Item-list

Min_Sup= ()
sw k

Sup x ；

for each item ix ∈Item-list do

if the frequent type of Xi is changed then
 set the frequent item-sign of all node with item-name=Xi in CFP-tree;
endif

endofor

3.4. Efficiently Pruning CFP-tree

As data streams flow, the information of many historic transactions might become
obsolete. Additionally, the number of lots of infrequent item sets is really huge. It is consumptive
for a CFP-tree to maintain lots of obsolete item sets and infrequent item sets. So, an operation
of pruning CFP-tree should be periodically performed to delete the obsolete and infrequent item
sets.

Theorem 2. If Xi is an infrequent item set, Xi could be deleted without bringing any false
error.

Proof. Suppose a sliding window, SW = [SW1, SW2, …, SWn], is an infinite sequence of
basic windows, where n is the number of sliding window. Additionally, |N| is the number of
transaction in sliding window, |SWi| is the number of transaction in basic window and ε is a user
specified maximum support error threshold.

As any Xi in a sliding window, its support threshold is defined ()
i

sw i
f x .If Xi is infrequent

item in the basic window of m and it is changed frequent item or significant item in the basic
window of n-m, its true support threshold in sliding window, SW,is as following:

'
() () ()

1

m
f x f x f xsw jsw i sw i i

j

∑= +
=

 m＜n

in MCFI-SW, if Xi is a infrequent item set, we can know () | |
s w i ii

xf S W≤ ε ×

1 1

| || |()
j

mm

BW j

j j

NBWf x
= =

≤ ε × ε ×<∑ ∑ , hence, '
() () | |x x N

SW SW
f f− < ε× . ends

Theorem 3. As any path in the CFP-tree, the support threshold of nodes in the same
path is descending sort and all leaf nodes represent the item set of least support threshold.

Proof. Let nodei and nodej be two nodes in the same path of a CFP-tree and nodei be
an ancestor of nodej .

According to the properties of the CFP-tree and algorithm 1, we can know that if nodei

be an ancestor of nodej, i j
node nodep .Additionally, if nodej is stored in the CFP-tree, nodei must

be inserted into the CFP-tree because nodei and nodej are both in the same path. But, if nodei is
stored in the CFP-tree, nodej could not be inserted into the CFP-tree. Hence, nodei.count,
nodej.count.

According to algorithm 2, we can know that all the leaf nodes are the last node inserted
in each path of the CFP-tree and the support threshold of their parent nodes is greater than
their support threshold. Hence, all the leaf nodes represent the item set of least support
threshold. ends.

According to the properties of the CFP-tree, tid registers the number of current
transaction and it corresponds to pointer which is a pointer pointing the last item of each branch
in the CFP-tree. Thus, the obsolete items can be immediately moved by the pointer from the
CFP-tree. At the same time, a lot of infrequent items and the items which their frequent support
threshold is zero are recorded in the CFP-tree. One, if () | |

sw i
f x N≤ ε ,

i
x Item list∀ ∈ − ,Xi is a

infrequent item. According to theorem 3, the child nodes of Xi are infrequent items. Hence,
According to theorem 2, all nodes carrying item-name are the same to Xi in the CFP-tree and
their descendant are deleted. Two, () | |

sw i
f x N> ε ,

i
x Item list∀ ∈ − , Xi is a frequent or significant

item. According to theorem 2, all nodes carrying item-name is the same to Xi in the CFP-tree

TELKOMNIKA e-ISSN: 2087-278X �

An Efficient Algorithm for Mining Top-K Closed Frequent Itemsets over … (Mao Yimin)

3763

cannot be deleted. But, if the nodes carrying Xi.count are zero in the CFP-tree, Xi is an obsolete
item. According to theorem 3, their descendant nodes are obsolete items.

Based on the above propositions and analysis, given the maximum support error ε and
the size, N, of a sliding window, the CFP-tree could be pruned by the procedure shown in
algorithm 3 without needing to traverse the whole CFP-tree.

Algorithm 3. PruningCFP-tree
Input：：：： a CFP-tree to be pruned, the number of current transaction in the data stream tidC；
Output：：：： a CFP-tree after being pruned
for each tid< tidc， ∈where tid Tid-list do
 for each Xi∈path which tid corresponds to pointer pointing each branch in the CFP-tree

Xi.count= Xi.count-1
endfor

endfor
for each Xi∈Item-list do

count Xi.count
if the frequent type of Xi is changed then
 set the frequent item-sign of all node with item-name=Xi in the CFP-tree
endif
if fSW（ xi） ）ε*|N|

delete all nodes carrying item-name=Xi in CFP-tree and their descent;
 delete Xi from Item-list;
else
 delete all nodes carrying item-name=Xi and Xi.count=0 in the CFP-tree and their descent;
endif

endfor

3.5. Mining Closed Frequent Item sets from CFP-tree

This paper adopts the idea of CLOSE+ [11] which bases on the famous FP-tree in static
data-base to find the closed frequent item sets in data stream over sliding window. Because the
CFP-tree is similar to FP-tree in structure, but different from FP-tree in dealing with the data, it
needs to improve the CLOSE+ to find the closed frequent item sets from CFP-tree.

Theorem 4: In a CFP-tree that has been pruned, the potential frequent item sets are
not always the leaves.

Proof: suppose |N| is the number of transactions in a sliding window, ε is a user
specified maximum support error threshold, the leaf node is nodeleaves. Suppose all of the leaf
nodes are significant frequent items, that to say, () | |

sw leaves
f node N> ε .

In CFP-tree, if an item im that is sorted latter location in lexicographical-order, it means
i1p i2…p im， im is leaf node, ()

sw m
f x p= and () | |p s N> − ε .Due to algorithm 2 and theorem 3, we

can know the number of im is p, () 1 | |
sw m

f x N= < ε , so im possibly is the leaf node of p branches

in CFP-tree. It conflicts with the suppose, so the theore is proved.
From the theorem 3, we can know that nodes of every branch in FP-tree and CFP-tree

both are ordered by decreasing support, so it is easy to build the conditional pattern base. FP–
tree stores all frequent items in data-base, however CFP-tree stores all the frequent items and
potential frequent items in sliding window. Compared to CLOSE+, mining Top-K closed frequent
item sets from CFP-tree has two improvements. First, the algorithm has to neglect the potential
frequent items, and build the conditional pattern base in frequent items in Item-list. Second,
when building conditional pattern base of some item, the conditional pattern base must only
include the frequent items, must not include the potential frequent items according to theorem 4.
The procedure of mining Top-K closed frequent item sets is shown in algorithm 4.

Algorithm 4 MiningTPCFP
Input： T: a CFP-tree；
Output： Top-K closed frequent item sets；
for each 1 (in_) | |M Sup Nx − ε> in Item-list

call the third, fourth step in the CLOSET+ algorithm ；
endfor
traverse ITLHIR-tree，
output Top-K closed frequent item sets；

 � e-ISSN: 2087-278X

TELKOMNIKA Vol. 11, No. 7, July 2013 : 3759 – 3766

3764

4. Experimental Results and Analysis
For sake of evaluating the performance of this algorithm, all experiments are conducted

in Pentium IV PCs with the configurations of 2GHz in CPU, 1 GB in memory storage and
Windows XP operation system. All experimental programs are compiled by C language and
operated in the environment of VC ++ 6.0. The analog data in the experiment are produced by
IBM analog data generators [117]. Main specifications of synthetic data are indicated as follows: T
represent average length of transactions, I represents average length of frequent item sets, D
represents the number of transactions, 1 K represents 1000 records of transactions. All item
numbers in the experiment are set by 1000, with allowable maximum deviation by users at the
value of s/100.

4.1. Performance Comparison of the Algorithm

Initially, the time and space efficiency of the algorithm are tested with variation of the
sliding window numbers. Experiments are conducted collectively in the three data, namely,
T10I4D100K, T20I8D100K and T30I20100K. In the experiment, the size of basic window in
sliding window is set by 1000, the size of sliding window is set by 10000, and Top-k=100. Figure
1 (a) indicates that the consumed time in environment of numerous data categories varies
slightly with the increase of transaction data stream. Figure 1(b) indicates that the storage
capacity required by the algorithm in these three data varies within a small scope with the shift
of sliding windows. As can be seen from Figure 1, the MTKCFI-SW algorithm has a fairly sound
performance.

(a) Running Time of the Algorithm

(b) Storage Space of the Algorithm

Figure 1. Space-time Efficiency of the Algorithm with Data Variation of Sliding Windows

Secondly, the space-time efficiency of the algorithm can be tested with variations of the
sizes of sliding windows. The experiment is conducted in the data set T10I4D100K, with the
setting of Top-k=100, the settings of sizes of the sliding windows are respectively 5000, 10000
and 15000. The execution time and space consumption of ten sliding windows in the data set
T10I4D100K is processed consecutively by the algorithm. As can be seen from Figure 2, with
the increase of sizes of sliding windows, the consumption of resources also increases. This is
because once the sizes of sliding windows increase, the information required to be maintained
and searched increases as well. However, once the sizes of sliding windows are fixed, the time
consumption and memory storage maintenance of the algorithm tend to be stable.

Besides, the time and space efficiency of the algorithm can be tested with variations of
the sizes of Top-k. The experiment is conducted in the data set T10I4D100k, with the setting of
10000, the settings of sizes of Top-k are respectively 50, 100, 200 and 400. As can be seen
from Figure 3, the consumption of time and memory storage may increase in proportion to the
volume of Top-k in the process of mining. However, the time-space consumption of the
algorithm tends to be stable with respect to each single sliding window.

TELKOMNIKA e-ISSN: 2087-278X �

An Efficient Algorithm for Mining Top-K Closed Frequent Itemsets over … (Mao Yimin)

3765

(a) Running Time of the Algorithm

(b) Storage Space of the Algorithm

Figure 2. Space-time Efficiency of the Algorithm with Size Variation of Sliding Windows

(a) Running Time of the Algorithm

(b) Storage Space of the Algorithm

Figure 3. Space-time Efficiency of the Algorithm with Quantity Variation of Top-k

4.2. Performance Comparison of the Algorithm
A time-space efficiency comparison of the algorithm can be made in various sizes of

sliding windows. The size of the basic window is 1000 transactions in this experiment, sizes of
the sliding windows range from 10k to 100k. The experiment has adopted T10I4D100k data set
to evaluate the running time and space consumption of MTKCFI-SW and TCIS when Top-
k=100. Figure 4 (a) indicates that the execution time of algorithm MTKCFI-DS is less than that
of TCIS; Figure 4 (b) indicates that with the increase of data, the storage capacity of MTKCFI-
DS tends to be stable and the required storage capacity of algorithm MTKCFI-DS is less than
that of TCIS.

(a) Running Time of the Algorithm

(b) Storage Space of the Algorithm

Figure 4. Space-time Efficiency Comparison of the Algorithm with various Size of Sliding

Windows

 � e-ISSN: 2087-278X

TELKOMNIKA Vol. 11, No. 7, July 2013 : 3759 – 3766

3766

5. Conclusion
Focusing on problems such as complexities existing in compressed storage structures

of the current data stream Top-k closed frequent item sets algorithm and inaccuracy in the
algorithm, the chapter puts forward an algorithm of MTKCFI-SW by designing compact prefix
pattern trees for compression and storage of effective information in data stream sliding
windows. It improves the time efficiency of this algorithm by reducing maintenance cost, with
less information storage in nodes. The CFP-tree, capable of promptly capturing newly added
data stream information under circumstances of any sliding window sizes, does not need to fix
the sizes of sliding windows and thus improves the flexibility of this algorithm. By adoption of
pointer operations, large quantities of infrequent item sets can be deleted from the CFP-tree so
as to improve time efficiency of this algorithm without traversing the whole CFP-tree. Research
in dynamic determination of mining threshold and pruning threshold also helps to improve
accuracy of this algorithm by adopting an effective approach in mining Top-k closed frequent
item sets in the environment of data stream.

Acknowledgement

This research was supported by the research grant of department of education in
Jiangxi (GJJ12347), natural science foundation of Jiangxi (20122BAB201045) and national
natural science foundation of China (51164012).

References
[1] YL Cheung, AWC Fu. Mining frequent item sets without support threshold: with and without item

constraints. IEEE Transactions on Knowledge and Data Engineering. 2004; 18(3): 1052-1069.
[2] L Golab, D Dehaan. Identifying frequent items in sliding windows over on-line packet streams. In

SIGCOMM Internet Measurement Conference, Miami, ACM. 2003; 17(4): 173-178.
[3] X Liu, H Xu, Y Dongl. Mining frequent closed patterns from a sliding window over data streams.

Journal of Computer Research and Development. 2006; 43(10): 1738-1743.
[4] JH Chang, WS Lee. A sliding window method for finding recently frequent item sets over online data

streams. Journal of Information Science and Engineering. 2004; 20(2): 753-762.
[5] Yang Bei, Huang Houkuan. Mining Top-K Significant Item sets in Landmark Windows over Data

streams. Journal of Computer Research and Development. 2010; 47(3): 463-473.
[6] AWC Fu, RWW Kwong. Mining N-most interesting item sets. International Symposium of

Methodologies for Intelligent Systems. New York. 2000: 59-67.
[7] Y Chi, H Wang. Moment: maintaining closed frequent item sets over a sliding window. the Fourth

IEEE International Conference on Data Mining. Houston. 2004: 59-66.
[8] N Jiang, L Gruenwald. CFI-stream: mining closed frequent item sets in data streams. KDD’06.

Philadelphia. 2006: 592-597.
[9] C Lin, D Chiu. Mining frequent item sets from data streams with a time-sensitive sliding window. SIAM

International Conference on Data Mining. California. 2005: 67-74.
[10] J Han, J Pei. Mining Frequent Patterns without Candidate Generation. In Proceeding of the ACM

International Conference on Management of Data. New York. 2000: 1-12.
[11] Jianyong Wang, Han Jiawei. CLOSET +: Searching for the Best Strategies for Mining Frequent closed

Item sets. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New
York. 2003: 236-245.

