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Abstract 
Focusing on problems such as complexities existing in compressed storage structures of the 

current data stream Top-k closed frequent item sets algorithm and inaccuracy in the algorithm, the paper 
puts forward an algorithm of MTKCFI-SW by designing compact prefix pattern trees for compression and 
storage of effective information in data stream sliding windows. The CFP-tree, capable of promptly 
capturing newly added data stream information under circumstances of any sliding window sizes, does not 
need to fix the sizes of sliding windows and thus improves the flexibility of this algorithm. Research in 
dynamic determination of mining threshold and pruning threshold also helps to improve accuracy of this 
algorithm by adopting an effective approach in mining Top-k closed frequent item sets in the environment 
of data stream. 
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1. Introduction 

In recent years, mining of data streams has becomes one of the most important 
research issues of data mining. Data streams are found in a lot of applications including network 
monitoring and traffic management, sensor network monitoring, transaction analysis of large 
electronic-commerce, stock tickler monitoring, web click steam monitoring and mining. However, 
new challenges have emerged. Due to their vast sizes, some stream types should be mined fast 
before being deleted forever. Generally, the alphabet is too large to keep exact information for 
all elements. Conventional database and mining techniques, though effective with stored data, 
are deemed impractical in this setting. 

Efficient stream mining methods based on a user-specified minimum support threshold 
min_sup have been studied extensively. However, the setting of minimum support threshold is 
quite tricky and it leads to the following problem that may hinder its popular use. There are two 
challenges of minimum support based stream data mining: (1) if the value of minimum support 
threshold is set to be too small, the pattern mining algorithm may lead to the generation of 
thousands of patterns; (2) if the value of minimum support constraint is set to be too big, the 
mining algorithm may often generate a few patterns or even no answers. As it is difficult to 
predict how many patterns will be mined with a user-defined minimum support threshold, the 
top-K pattern mining has been proposed.  

Top-K frequent item sets mining on definite database were studied in [1, 6], but they did 
not have counterparts in the sliding window model. Golab [2] presented an algorithm 
FREQUENT for detecting the Top-K frequent items in sliding windows defined over packet 
streams. It works in the jumping window model and performs well with bursty TPC/IP streams 
containing a small set of popular item types, but it deals with only one-item while cannot be 
employed in multiply item sets situations. Closed frequent item sets mining over data streams 
were studied in [7, 8, 3], and algorithms for frequent item sets mining in sliding windows were 
presented in [4, 9]. However they all do not resolve the basic problems of setting a support 
threshold. To the best of our knowledge, document 5 is little progress made thus far to explicitly 
address the problem of Top-K closed frequent item sets mining in sliding windows. Three 
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optimal strategies are exploited to reduce time and space consumption of the algorithm: (1) 
pruning impotent nodes in the newest basic window whenever a sliding window updates, (2) 
promoting support threshold during mining process dynamically, and (3) adjusting potency 
parameter adaptively. But it exists three problems in the algorithm: (1) fixing the size of the 
sliding window, (2) generating too much price to maintaining nodes, (3) not being enough 
precise to define mining threshold and pruning threshold. 

Our contribution is devising efficient algorithms for finding the Top-K closed item sets 
within the current sliding window. In this paper, three strategies are presented to reduce the 
mining time and space consumption dramatically, and experimental study validates their 
effectiveness and efficiency. 
 
 
2. Preliminaries 

A data stream, DS = [W1, W2, …, WN], is an infinite sequence of basic windows, where 
each basic window Wi, ∀ i = 1, 2, …, N, is associated with a window identifier i, and N is the 
window identifier of the “latest” basic window WN. A basic window consists of a fixed sized 
number of transactions denoted by <T1, T2,…, Tk,…>. Eeach transaction is composed of a set of 
items (named item set) denoted by Xi(i=1, 2,…, p). The size of a basic window Wi is denoted by 
|W i|.  

Because it is unrealistic to store all the data into limited main memory or even in 
secondary storage, the single-pass algorithm for mining data streams has to sacrifice the 
correctness of their analytical results by allowing some frequency errors. Therefore, the true 
support of an item set Xi is the number of transactions of the stream containing the item set as a 
subset, and denoted by ' ( )

sw i
f x . The estimated support of an item set Xi is the estimated true 

support stored in the summary data structure, and denoted by ( )
sw i

f x . Note that 1 ≤ ( )
sw i

f x ≤
' ( )

sw i
f x . 

In this paper, the item sets embedded in the data streams can be divided into three types: 
frequent item set, significant item set, and infrequent item set. An item set Xi is called frequent 
if ( ) ( ) | |

sw i
f x s N> − ε , where s is a user-defined minimum support threshold in the range of [0, 1], 

ε is a user specified maximum support error threshold in the range of [0, s] and |N| is the 
number of transactions in sliding window. An item set Xi is called significant if ( ) | |

sw i
f x N> ε . An 

item set Xi is called infrequent if ( ) | |
sw i

f x N≤ ε . 

XpY denotes that lexicographical-order of item X is lower than that the item Y in this 
paper. 

 
 

3.  Algorithm Implement 
3.1. The Structure of CFP-Tree 

The current frequent pattern tree is an improved FP-tree [10] to adapt for incrementally 
mining the current frequent patterns over an online data stream. Compared with an FP-tree, a 
CFP-tree has the following improvements: 

(1) All items in the CFP-tree are sorted in lexicographical-order. In contrast, the frequent 
items in the FP-tree are sorted in their frequency descending order. 

(2) Each node in an FP-tree consists of three fields: item-name, count, and node-link. 
But in a CFP-tree, besides three fields, another field, item-sign (also means the sign of item) 
registers the type of node, which 0 is frequent item, 1 is significant item and 2 is infrequent item. 

(3) An item-list table is used to index the CFP-tree. All items of a data stream are 
maintained in the table and sorted in lexicographical-order. Each entry in the table consists of 
four fields, item-name, count, item-sign and head of node-link, where head of node-link is a 
pointer pointing to the first node in the CFP-tree carrying the item-name. 

(4) Each entry in the tid-list consists of two fields: tid and pointer. Tid registers the 
number of transaction. Pointer is a pointer pointing the last item of each branch in the CFP-tree. 
 
3.2. Mining Algorithm of Top-k Closed Frequent Item sets in Sliding Windows 

For the sake of effectively mining Top-k closed frequent item sets in sliding windows of 
data stream, data steam information of the current windows is initially stored in CFP-tree by 
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algorithm and arranged by descending order in terms of the support of each item in Item-list. 
The minimum support threshold value is set in accordance with Theorem 1. Subsequently, the 
current windows are filtered in order to reduce the maintenance cost of CFP-tree by deleting 
numerous infrequent items from CFP-tree. Ultimately, the mining of Top-k closed frequent item 
sets in CFP-tree can be conducted. Detailed procedures are illustrated as shown in Algorithm 1. 

Each item in Item-list is arranged by descending order in terms of its support. Let us 
suppose Xk is the Kth item in terms of support by descending order, in which Xi∈ Item-list (I = 1, 
2, …, k), Supsw(Xk) is the minimum support of item Xk. 

Theorem 1 In the CFP-tree structure, if ix Item list∀ ∈ −
, 

( ) ( )sw i sw kSup x Sup x≥
, then 

the number of closed frequent item sets produced by the item Xi is larger than that of Top-k 
closed frequent item sets.  

Proof the closed frequent item sets produced by item Xi can be classified into two 
cases: 

(1) ∵ item 
i CFIx ⊂  ∴ Supsw(Xi)≥Supsw(Xk) 

    From the definition of closed frequent item sets, it can be inferred that Xi might produce item 
sets: 

( , 1, 2, ..., )
ji j

CFI x Item list j kx x ∈ − =∪ ⊂   ( ) ( )
sw i j sw k

Sup x x Sup x∪ ≥  

That is to say, the number of closed frequent item sets produced by Xi is equivalent to 
that of the item sets Xi and Xi∪Xl. 

(2) item 
li CFIxx ∪ ⊂ , and ( ) ( )

sw i l sw k
Sup x x Sup x∪ ≥  (

l
x Item list∈ −  1 , 2 , . . . )l k=  

From the definition of closed frequent item sets, it can be inferred that item set Xi∪Xl 
might produce item sets: 

( , 1, 2, ..., )
pi l p

CFI x Item list p kx x x ∈ − =∪ ∪ ⊂       

That is to say, the number of closed frequent item sets produced by item Xi∪Xl is 
equivalent to that of the item sets Xi∪Xl and Xi∪Xl∪Xp. 

As can be inferred from Theorem 1, in MTKCFI-SW algorithm, the minimum support of 
the current sliding window is determined by the minimum support of the kth item Xk in Item-list, 
which is referred to as “Dynamic Determination of Mining Threshold” in the paper. In this way, 
the mining threshold and pruning threshold can be immediately determined, which are 
exempted from the influence of any parameters and can fairly increase precision of the 
algorithm. 
     Algorithm 1 MTKCFI-SW 
Input: the current data stream transaction 
Output: Top-k closed frequent item sets in current sliding window 

Call Updata CFP-tree( )；  
Call Pruning CFP-tree( )；  
Call Ming TPCFI( )；  
 

3.3. Incremental Updata 
The information in sliding window over data stream is constantly changed. When new 

transactions in current window arrive in sliding window, the transactions in obsolete window are 
deleted from sliding window. Thus, the newly generated transaction can be stored immediately 
in the CFP-tree according to lexicographical-order as it arrives. The procedure of incrementally 
updating a CFP-tree is shown in algorithm 2. 

Algorithm 2 Updata CFP-tree 
Input: the current transaction in the data stream TC, a user-specified minimum support threshold s∈ (0,1), 
and a user-defined maximum support error threshold ε∈ (0,s); 
Output: A CFP-tree generated so far; 

Get the projection TC,,of TC；  
for each item Xi∈TC, do  

    if Xi∉Item-list then  
      Create a new entry of form(xi,,1,2,node-link) into the Item-list; 
    else  

    Xi.count= Xi.count+1；   
Endif 

   if CFP-tree has a child node with itemname such that y.itemname=xi.itemname then 
   y.count=y.count+1；  
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else 
  Create a new entry of form (xi,,1,2,node-link) into the  CFP-tree; 

  endif 
endfor 
Order Item-list 

Min_Sup= ( )
sw k

Sup x ；  

for each item ix ∈Item-list  do 

if the frequent type of Xi is changed then 
  set the frequent item-sign of all node with item-name=Xi  in CFP-tree; 
endif 

endofor  
 
3.4. Efficiently Pruning CFP-tree 

As data streams flow, the information of many historic transactions might become 
obsolete. Additionally, the number of lots of infrequent item sets is really huge. It is consumptive 
for a CFP-tree to maintain lots of obsolete item sets and infrequent item sets. So, an operation 
of pruning CFP-tree should be periodically performed to delete the obsolete and infrequent item 
sets. 

Theorem 2. If Xi is an infrequent item set, Xi could be deleted without bringing any false 
error. 

Proof. Suppose a sliding window, SW = [SW1, SW2, …, SWn], is an infinite sequence of 
basic windows, where n is the number of sliding window. Additionally, |N| is the number of 
transaction in sliding window, |SWi| is the number of transaction in basic window and ε is a user 
specified maximum support error threshold. 

As any Xi in a sliding window, its support threshold is defined ( )
i

sw i
f x .If Xi is infrequent 

item in the basic window of m and it is changed frequent item or significant item in the basic 
window of n-m, its true support threshold in sliding window, SW,is as following: 

'
( ) ( ) ( )

1

m
f x f x f xsw jsw i sw i i

j

∑= +
=

 m＜n 

in MCFI-SW, if Xi is a infrequent item set, we can know ( ) | |
s w i ii

xf S W≤ ε ×  

1 1

| || |( )
j

mm

BW j

j j

NBWf x
= =

≤ ε × ε ×<∑ ∑ , hence, '
( ) ( ) | |x x N

SW SW
f f− < ε× . ends 

Theorem 3. As any path in the CFP-tree, the support threshold of nodes in the same 
path is descending sort and all leaf nodes represent the item set of least support threshold. 

Proof.  Let nodei and nodej be two nodes in the same path of a CFP-tree and  nodei be 
an ancestor of nodej . 

According to the properties of the CFP-tree and algorithm 1, we can know that if nodei 

be an ancestor of nodej, i j
node nodep .Additionally, if nodej is stored in the CFP-tree, nodei must 

be inserted into the CFP-tree because nodei and nodej are both in the same path. But, if nodei is 
stored in the CFP-tree, nodej could not be inserted into the CFP-tree. Hence, nodei.count, 
nodej.count. 

According to algorithm 2, we can know that all the leaf nodes are the last node inserted 
in each path of the CFP-tree and the support threshold of their parent nodes is greater than 
their support threshold. Hence, all the leaf nodes represent the item set of least support 
threshold. ends. 

According to the properties of the CFP-tree, tid registers the number of current 
transaction and it corresponds to pointer which is a pointer pointing the last item of each branch 
in the CFP-tree. Thus, the obsolete items can be immediately moved by the pointer from the 
CFP-tree. At the same time, a lot of infrequent items and the items which their frequent support 
threshold is zero are recorded in the CFP-tree. One, if ( ) | |

sw i
f x N≤ ε ,

i
x Item list∀ ∈ − ,Xi is  a 

infrequent item. According to theorem 3, the child nodes of Xi are infrequent items. Hence, 
According to theorem 2, all nodes carrying item-name are the same to Xi in the CFP-tree and 
their descendant are deleted. Two, ( ) | |

sw i
f x N> ε ,

i
x Item list∀ ∈ − , Xi is  a frequent or significant 

item. According to theorem 2, all nodes carrying item-name is the same to Xi in the CFP-tree 
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cannot be deleted. But, if the nodes carrying Xi.count are zero in the CFP-tree, Xi is an obsolete 
item. According to theorem 3, their descendant nodes are obsolete items. 

Based on the above propositions and analysis, given the maximum support error ε and 
the size, N, of a sliding window, the CFP-tree could be pruned by the procedure shown in 
algorithm 3 without needing to traverse the whole CFP-tree. 

Algorithm 3. PruningCFP-tree 
Input：：：： a CFP-tree to be pruned, the number of current transaction in the data stream tidC；  
Output：：：： a CFP-tree after being pruned 
for each tid< tidc， ∈where tid Tid-list do  
  for each Xi∈path which tid corresponds to pointer pointing each branch in the CFP-tree  

Xi.count= Xi.count-1 
endfor 

endfor 
for each Xi∈Item-list do 

count Xi.count 
if the frequent type of Xi is changed then 
   set the frequent item-sign of all node with  item-name=Xi  in the CFP-tree  
endif 
if fSW（ xi） ）ε*|N| 

delete all nodes carrying item-name=Xi in CFP-tree and their descent; 
  delete Xi from Item-list; 
else 
  delete all nodes carrying item-name=Xi and Xi.count=0 in the CFP-tree and their descent; 
endif  

endfor 
 
3.5. Mining Closed Frequent Item sets from CFP-tree 

This paper adopts the idea of CLOSE+ [11] which bases on the famous FP-tree in static 
data-base to find the closed frequent item sets in data stream over sliding window. Because the 
CFP-tree is similar to FP-tree in structure, but different from FP-tree in dealing with the data, it 
needs to improve the CLOSE+ to find the closed frequent item sets from CFP-tree. 

Theorem 4: In a CFP-tree that has been pruned, the potential frequent item sets are 
not always the leaves. 

Proof: suppose |N| is the number of transactions in a sliding window, ε is a user 
specified maximum support error threshold, the leaf node is nodeleaves. Suppose all of the leaf 
nodes are significant frequent items, that to say, ( ) | |

sw leaves
f node N> ε . 

In CFP-tree, if an item im that is sorted latter location in lexicographical-order, it means 
i1p i2…p im， im is leaf node, ( )

sw m
f x p= and ( ) | |p s N> − ε .Due to algorithm 2 and  theorem 3, we 

can know the number of im is p, ( ) 1 | |
sw m

f x N= < ε , so im possibly is the leaf node of p branches 

in CFP-tree. It conflicts with the suppose, so the theore is proved. 
From the theorem 3, we can know that nodes of every branch in FP-tree and CFP-tree 

both are ordered by decreasing support, so it is easy to build the conditional pattern base. FP–
tree stores all frequent items in data-base, however CFP-tree stores all the frequent items and 
potential frequent items in sliding window. Compared to CLOSE+, mining Top-K closed frequent 
item sets from CFP-tree has two improvements. First, the algorithm has to neglect the potential 
frequent items, and build the conditional pattern base in frequent items in Item-list. Second, 
when building conditional pattern base of some item, the conditional pattern base must only 
include the frequent items, must not include the potential frequent items according to theorem 4. 
The procedure of mining Top-K closed frequent item sets is shown in algorithm 4. 

Algorithm 4 MiningTPCFP 
Input：  T: a CFP-tree；  
Output：  Top-K closed frequent item sets；  
for each 1 ( in_ ) | |M Sup Nx − ε>  in Item-list 

call the third, fourth step in the CLOSET+ algorithm ；  
endfor 
traverse ITLHIR-tree，  
output Top-K closed frequent item sets；  
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4.  Experimental Results and Analysis 
For sake of evaluating the performance of this algorithm, all experiments are conducted 

in Pentium IV PCs with the configurations of 2GHz in CPU, 1 GB in memory storage and 
Windows XP operation system. All experimental programs are compiled by C language and 
operated in the environment of VC ++ 6.0. The analog data in the experiment are produced by 
IBM analog data generators [117]. Main specifications of synthetic data are indicated as follows: T 
represent average length of transactions, I represents average length of frequent item sets, D 
represents the number of transactions, 1 K represents 1000 records of transactions. All item 
numbers in the experiment are set by 1000, with allowable maximum deviation by users at the 
value of s/100. 

 
4.1. Performance Comparison of the Algorithm 

Initially, the time and space efficiency of the algorithm are tested with variation of the 
sliding window numbers. Experiments are conducted collectively in the three data, namely, 
T10I4D100K, T20I8D100K and T30I20100K. In the experiment, the size of basic window in 
sliding window is set by 1000, the size of sliding window is set by 10000, and Top-k=100. Figure 
1 (a) indicates that the consumed time in environment of numerous data categories varies 
slightly with the increase of transaction data stream. Figure 1(b) indicates that the storage 
capacity required by the algorithm in these three data varies within a small scope with the shift 
of sliding windows. As can be seen from Figure 1, the MTKCFI-SW algorithm has a fairly sound 
performance. 

 

 
(a) Running Time of the Algorithm 

 
(b) Storage Space of the Algorithm 

 
Figure 1. Space-time Efficiency of the Algorithm with Data Variation of Sliding Windows 

 
 

Secondly, the space-time efficiency of the algorithm can be tested with variations of the 
sizes of sliding windows. The experiment is conducted in the data set T10I4D100K, with the 
setting of Top-k=100, the settings of sizes of the sliding windows are respectively 5000, 10000 
and 15000. The execution time and space consumption of ten sliding windows in the data set 
T10I4D100K is processed consecutively by the algorithm. As can be seen from Figure 2, with 
the increase of sizes of sliding windows, the consumption of resources also increases. This is 
because once the sizes of sliding windows increase, the information required to be maintained 
and searched increases as well. However, once the sizes of sliding windows are fixed, the time 
consumption and memory storage maintenance of the algorithm tend to be stable. 

Besides, the time and space efficiency of the algorithm can be tested with variations of 
the sizes of Top-k. The experiment is conducted in the data set T10I4D100k, with the setting of 
10000, the settings of sizes of Top-k are respectively 50, 100, 200 and 400. As can be seen 
from Figure 3, the consumption of time and memory storage may increase in proportion to the 
volume of Top-k in the process of mining. However, the time-space consumption of the 
algorithm tends to be stable with respect to each single sliding window. 
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(a) Running Time of the Algorithm 

 
(b) Storage Space of the Algorithm 

 
Figure 2. Space-time Efficiency of the Algorithm with Size Variation of Sliding Windows 

 
 

 
(a) Running Time of the Algorithm 

 
(b) Storage Space of the Algorithm 

 
Figure 3. Space-time Efficiency of the Algorithm with Quantity Variation of Top-k 

 
 

4.2. Performance Comparison of the Algorithm 
A time-space efficiency comparison of the algorithm can be made in various sizes of 

sliding windows. The size of the basic window is 1000 transactions in this experiment, sizes of 
the sliding windows range from 10k to 100k. The experiment has adopted T10I4D100k data set 
to evaluate the running time and space consumption of MTKCFI-SW and TCIS when Top-
k=100. Figure 4 (a) indicates that the execution time of algorithm MTKCFI-DS is less than that 
of TCIS; Figure 4 (b) indicates that with the increase of data, the storage capacity of MTKCFI-
DS tends to be stable and the required storage capacity of algorithm MTKCFI-DS is less than 
that of TCIS. 
 

 
(a) Running Time of the Algorithm 

 
(b) Storage Space of the Algorithm 

 
Figure 4. Space-time Efficiency Comparison of the Algorithm with various Size of Sliding 

Windows 
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5. Conclusion 
Focusing on problems such as complexities existing in compressed storage structures 

of the current data stream Top-k closed frequent item sets algorithm and inaccuracy in the 
algorithm, the chapter puts forward an algorithm of MTKCFI-SW by designing compact prefix 
pattern trees for compression and storage of effective information in data stream sliding 
windows. It improves the time efficiency of this algorithm by reducing maintenance cost, with 
less information storage in nodes. The CFP-tree, capable of promptly capturing newly added 
data stream information under circumstances of any sliding window sizes, does not need to fix 
the sizes of sliding windows and thus improves the flexibility of this algorithm. By adoption of 
pointer operations, large quantities of infrequent item sets can be deleted from the CFP-tree so 
as to improve time efficiency of this algorithm without traversing the whole CFP-tree. Research 
in dynamic determination of mining threshold and pruning threshold also helps to improve 
accuracy of this algorithm by adopting an effective approach in mining Top-k closed frequent 
item sets in the environment of data stream. 
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