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 The large-scale distribution of camera networks in the traffic area resulted in 

the increasing popularity of video surveillance systems. As pedestrian 

detection and tracking are the critical monitoring targets in traffic 

surveillance, many studies focus on pedestrian detection algorithms across 

cameras. This paper addressed the effect of using the age estimation based on 

deep convolution neural network (CNN) as a convenience for pedestrian 

monitoring who is crossing at intersections. Two popular deep convolutional 

neural networks (DCNNs) pre-trained models have been used in this work, 

which have recently achieved the best performance in facial features 

extraction tasks: VGG-Face and ResNet-50. We combined these two models 

to increase the efficiency of the proposed system. We ran our experiments to 

evaluate the system based on the VGGFace2 dataset consisting of 3.31 

million face images. From the experimental results, we observed a gap in the 

detection performances between those age groups: children from (00-10) 

years and elderly with 55 years and more. Moreover, it noted that the 

proposed pedestrian age estimation model performance is high, also a good 

result can be obtained by using the model for new purpose. 
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1. INTRODUCTION  

The World Health Organization (WHO) reported the statistics for the number of road traffic deaths 

in 2018, the rate of death reached 1.35 million in 2016 with an average rate of 27.5 deaths per 100,000 

population as shown in Figure 1. The report recommended the need to improve the roads infrastructure, 

which represents the main cause of the fatal injury in road traffic collisions [1]. Pedestrian monitoring 

systems provide quantitative insights into the pedestrian traffic state, although they are easy to install and 

good under normal conditions, but they are not 100% accurate [2]. This work focuses on age estimation for 

specific age groups, since elderly people fall during across the street is among the most damaging event and 

the most common occurrence, beside the children between those two phases, ages 4 through 10. The majority 

of pedestrian injuries happen in mid-block crosswalks, where young children try to cross a street without 

checking for traffic, or at intersections [3]. 

The proposed system is a part of the computer vision field, which plays a significant role in face 

recognition applications [4]. Briefly, the computer vision algorithms task is to extract the facial features from 

images and compare them with datasets of face profiles [5]. Recently deep learning plays a major role as a 

computer vision tool [6], [7]. In deep learning technology, a convolutional neural network (CNN) is a deep 

neural network architecture class that is mostly used to analyze the visual imagery [8], [9]. A deep CNN's 

mathematical construction consists of several types of layers: convolutional layers, pooling, and a connected 
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layer. The convolution and pooling layers' function are to perform feature extraction, while the fully 

connected layer feds with the result of these processes to get the final classification decision [10], [11]. 

 

 

 

Figure 1. Death rate from road traffic for the period (2000–2016) per 100,000 population 

 

 

VGG-Face and ResNet-50 are top-rated deep convolutional neural network (DCNN) models; we 

propose to use these two models to improve the estimation of pedestrian age. Using these architectures for 

feature extraction from images facilitates traditional methods' difficulty because it is needed to select which 

features are significant in each given image [12], [13]. We don't require to use feature descriptors:  

scale-invariant feature transform (SIFT), speeded up robust features (SURF), BRIEF, histogram-oriented 

gradient (HOG) and Support vector machine (SVM) for further recognition or classification tasks [14]. 

Machine learning is also not free of difficulties; overfitting problems represent one of the most difficult 

problems when using small datasets. This problem results from the enormous numbers of deep network 

parameters since they have multiple layers and thousands of nodes. Most of the studies on age estimation 

have occurred recently, so we find that most of the databases built for this purpose are small in size. To solve 

the overfitting problem, we built our proposed pedestrian age estimation system based on a deep CNN model, 

which trained on a huge database [15]. The main contribution of this paper is to achieve the best performance 

for human age estimation through the combination of VGG-Face and ResNet-50 models. 

Many related studies have been published on using video data to investigate pedestrians crossing 

behaviours. An investigation of pedestrian's location violations in [16], a study on prediction of pedestrians 

red-light crossing intentions based on the appearance characteristics: gender, age and head direction in [17], a 

SORT tracking model in [18], and a study based on region-based convolutional neural network (R-CNN) 

object detection model has been proposed in [19]. Although these previous studies were based on machine 

learning models, they were not efficient in detecting the relationships in the series of data for future 

predictions. Our work in pedestrian detection is based on age estimation, a study based on deep expect of 

visible age from a single image, which is performed using CNN architecture presented in [20]. The problem 

of this method is approached as a classification problem with 101 age classes. In section 2 of this work, we 

described the proposed model. The experimental model training and results have been proposed in section 3. 

Finally, the conclusions are reviewed in section 4. 
 

 

2. THE PROPOSED MODEL 

Our proposed method for pedestrian age estimation focused on training age-dependent face 

representation to enhance system performance, and it is based on two popular pre-trained models (ResNet-50 

and VGG-Face) to exploit age information for improving the detection system. At first, the system detects 

faces from the input images and enclosing them by a bounding box based on Haar-cascade method [21].  

Haar-cascade is a machine learning algorithm for object detection. In this method the cascade function is 

trained by a lot of positive and negative images, where the object that want to be detected is exist in the 

positive images, while the negative images are those where it is not. This method has been used to detect 

faces in images. Then, an age estimator module has been used to predicate the age of pedestrians 

automatically. Figure 2 shows a diagram of the model architecture.  

 

2.1. The pre-trained deep CNNs models 

Both ResNet-50 convolution network model suggested in [22], and VGG-Face convolution network 

model, suggested in [23], [24] have been used in this work to achieve some of the best performance in an age 

estimation task. ResNet-50 is a deep CNNs based on residual neuronal network architecture. This network is 
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distinguished by adding a shortcut connection between blocks, which switches the convolution network to a 

residual neural network version. The network consists of 34 residual layers for training and 41,192,951 

parameters; it has been adapted to age estimation to be used in this study. The ResNet-50 model structure is 

shown in Figure 3. 

The VGG-Face network is another deep CNNs based on VGG-16 network architecture, it consists 

of 11 layers, 8 blocks of convolutional layers, and three fully-connected layers with rectified linear unit 

(ReLU) activations, the network configuration is shown in Table 1. VGG-Face is applied as a facial feature 

extractor for age estimation purposes from the face images.  
 
 

 
 

Figure 2. The pedestrian age estimation model architecture 
 

 

 
 

Figure 3. ResNet-50 model structure 
 
 

Table 1. VGG-Face layers structure [22] 

Layer type name Support 
Filt 

dim 

Num 

filt 
Stride Pad Layer type name Support 

Filt 

dim 

Num 

filt 
Stride Pad 

0 input - - - - - 19 relu relu 4_1 1 - - 1 0 

1 conv conv1_1 3 3 64 1 1 20 conv conv4_2 3 512 512 1 1 

2 relu relu1_1 1 - - 1 0 21 relu relu 4_2 1 - - 1 0 
3 conv conv1_2 3 64 64 1 1 22 conv conv4_3 3 512 512 1 1 

4 relu relu 1_2 1 - - 1 0 23 relu relu4_3 1 - - 1 0 

5 mpool pool 1 2 - - 2 0 24 mpool pool4 2 - - 2 0 
6 conv conv2_1 3 64 128 1 1 25 conv conv5_1 3 512 512 1 1 

7 relu relu 2_1 1 - - 1 0 26 relu relu 5_1 1 - - 1 0 

8 conv conv2_2 3 128 128 1 1 27 conv conv5_2 3 512 512 1 1 
9 relu relu2_2 1 - - 1 0 28 relu relu5_2 1 - - 1 0 

10 mpool pool2 2 - - 2 0 30 relu relu5_3 1 - - 1 0 

11 conv conv3_2 3 128 256 1 1 31 mpool pool5 2 - - 2 0 

12 relu relu3_1 1 - - 1 0 32 conv fc6 7 512 4096 1 0 

13 conv conv3_2 3 256 256 1 1 33 relu relu6 1 - - 1 0 

14 relu relu3_2 1 - - 1 0 34 conv fc7 1 4096 4096 1 0 
15 conv conv3_3 3 256 256 1 1 35 relu relu7 1 - - 1 0 

16 relu relu3_3 1 - - 1 0 36 conv fc8 1 4096 2622 1 0 

17 mpool pool3 2 - - 2 0 37 softmx prob 1 - - 1 0 
18 conv conv4_1 3 256 512 1 1       

 

 

2.2. Assemble learning for age estimation 

The proposed age estimator is built based on fine-tuning the pre-trained models ResNet-50 and 

VGG-Face to leveraging an ensemble approach since they are achieving greater discrimination rates when 

compare them with other similar models. A vector of weights is obtained from the second to the last layer of 

the convolutional model, which can be used as feature vectors. The weights feature vectors considered the 

latent representation for the input image which each model learned. In the proposed method, we combined 

these latent representations by concatenating the feature vectors to form an overall feature vector inputted 

into logistic regression models for the final age prediction. 
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2.3. Database 

VGGFace2 dataset used in this work, provides a dataset of annotations of 3.31 million face images 

belong to 9131 subjects and about 362.6 images for each subject. VGGFace2 has been developed for the 

advanced study of face recognition systems, it has a large variety and available labels for age and pose. The 

VGGFace2 dataset's annotations are made on faces samples taken from Google Image [25]. Although the 

black and white face images are robust in face recognition but they are excluded, The VGGFace2 dataset 

focused on facial and image variation due to color processing as shown in Figure 4. Five age classes have 

been included in this study {(00-10), (11-20), (21-35), (36-54), (55-90)}. 

 

 

   
   

   
 

Figure 4. A sample of face image from VGGFace2 dataset 

 

 

2.4. Preprocessing dataset 

The environment of this work is based on TensorFlow, which represent the core open-source library 

to help researcher develop and train ML models. About 30k images of VGGFace2 have been used. Before 

loading input images, the working environment need some preparation such as installing the required 

libraries, then start to load the dataset. A preprocessing data, is required at this stage including cleansing the 

dataset from low quality images which will confuse the training model, A relabeling age group images to five 

categories {(00-10), (11-20), (21-35), (36-54), (55-90)}, splitting dataset to 80% train, 10% test and 10% 

validation and finally, set the batch size. The age estimation model is trained with three pre-trained-weight, 

and two deep learning algorithms (VGG-Face and ResNet50) as it illustrated in the experimental work.  

 

 

3. EXPERIMENTAL WORK AND RESULTS 

The proposed system's experimental work was designed to train an automatic pedestrian age 

estimator using face images dataset VGGFace2 and analyze the effect of using the two deep learning models, 

ResNet-50 and VGG-Face. To evaluate the system performance and efficiency, many experiments have been 

performed (Experiment 1); the ResNet-50 model is loaded with the pre-trained weight of "ImageNet", to use 

it as a base model. The ImageNet large scale visual recognition challenge (ILSVRC) is a large visual 

database containing more than 14 million images included with a total of 20,000 categories, which is used for 

object category classification and detection [26]-[29]. The result from ResNet-50 presents that both train and 

test performance are less than 50% as shown in Figure 5, this is due to the ImageNet is not specified for face 

images and contains various image categories. Figure 5 illustrate the accuracy of ResNet-50, the curve of 

accuracy on the training data (acc) while (val_acc) is the curve of accuracy on the validation data. 

(Experiment 2); The VGGFace2 dataset is divided into the training set, validation set, and test set, to 

train both VGG-Face and ResNet-50 pre-trained models as the baseline, which resulted from a higher 

performance of more than 90%. Moreover, The ResNet-50 resulted in a higher accuracy performance than 

VGG-Face, as shown in Figure 6. Finally, (3), to increase the system efficiency and enhance the performance 

we combined the two DCNN models in this experiment, the system accuracy increased both in train (0.9689) 

and test set (0.8801). The system trained using 150 epochs. Age prediction accuracy becomes (0.8678) on the 

validation set at epoch 50. We use the Adadelta optimization and sparse categorical cross-entropy, the model 

implemented using TensorFlow library. The system performance for experiments 3 illustrated in Figure 7. 

In this study, the class data is imbalanced. Therefore, a confusion matrix with normalization has 

been used. The best category prediction is on the age of 00-10 years old, and the worst prediction is on  

55-90 years old. This is because of face structure; the children face from 00-10 years old can easily 
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distinguish from other age groups. Therefore, the system classified this age group as the best. The confusion 

matrix is shown in Figure 8. The proposed system's test performance is (88.01%) and can be increased if the 

pedestrian face image taken in the close shot will be the high-quality resolute image, some of the test result 

images are shown in Figure 9. 

 

 

 
 

Figure 5. The accuracy of ResNet-50 loaded with ImageNet weights for the proposed system 

 

 

  
(a) (b) 

 

Figure 6. The accuracy of system training and testing for both VGG-Face and ResNet-50 models with  

VGGFace2 dataset: (a) VGG-Face trained with VGGFace2 dataset accuracy. The best train accuracy: 0.9092.  

The best test accuracy: 0.8603 and (b) ResNet-50 trained with VGGFace2 dataset accuracy. The best train ac

curacy: 0.9392. The best test accuracy: 0.8751 

 

 

 

 
 

Figure 7. The overall system performance by 

combining the two DCNN models 

 

Figure 8. Confusion matrix 
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Figure 9. Some of test result images 

 

 

4. CONCLUSION  

This paper implies a combination of two deep convolutional neural network DCNN model's 

architecture to estimate the pedestrians' age from the provided images of the surveillance camera system. The 

research contributes to reducing accidents resulting from crossing the street, in addition to alerting vehicle 

drivers to the presence of pedestrians on the road. The experimental work shows the efficiency and 

performance of the proposed method. It is also observed that there are some difficulties to estimate the 

elderly age group, besides the poor image resolution problem. We will enhance the proposed model in the 

future to improve the efficiency of other pedestrian face attributes. 
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