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Abstract 
At present, much more soft sensing have been widely used in industrial process control to 

improve the quality of product and assure safety in production. A novel method using Hilbert-Huang 
transform (HHT) combined with wavelet support vector machine (WSVM) is put forward. Firstly the method 
analyzes the intrinsic mode function (IMF) obtained after the empirical mode decomposition (EMD), then 
extracts IMF energy feature as the input feature vectors of the wavelet support vector machine. Based on 
the wavelet analysis and conditions of the support vector kernel function, a novel multi-dimension 
admissible support vector wavelet kernel function is presented, which is a multidimensional wavelet kernel, 
thus enhancing the generalization ability of the SVM. The proposed method is used to build soft sensing of 
diesel oil solidifying point. Compared with other two models, the result shows that HHT-WSVM approach 
has a better prediction and generalization. 
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1. Introduction 
There have been many soft sensing methods. Among them, HHT-WSVM approach 

method has proven to be a powerful method in soft sensing modelling. Soft sensing [1]-[3] has 
been widely used in industrial process control to improve the quality of product and assure 
safety in production. It employs easily-measured variables to predicate process variables to be 
measured, which is hard to measure directly, through computation and estimation models.  

The empirical mode decomposition (EMD) [4], [5] is a technique to decompose a given 
signal into a set of elemental signals called ‘‘intrinsic mode functions’’ (IMFs). The EMD is the 
base of the so-called ‘‘Hilbert–Huang transform (HHT)’’ [6] that comprises the EMD and the 
Hilbert spectral analysis that performs a spectral analysis using the Hilbert transform (HT) 
followed by an instantaneous frequency computation. 

Support vector machine (SVM) [7], [8] has been successfully employed to solve 
regression problem of nonlinearity and small sample. Based on the wavelet analysis and 
conditions of the support vector kernel function, a novel multi-dimension admissible support 
vector wavelet kernel function is presented, which is a multidimensional wavelet kernel, thus 
enhancing the generalization ability of the SVM. 

The purpose of this paper is to apply HHT to WSVM [9]-[13] for feature extraction. The 
wavelet support vector machine modelling which has a multidimensional wavelet kernel, then 
enhance the generalization ability of the SVM. The original inputs are firstly decomposed IMF 
using EMD, then extracts IMF energy feature as the input feature vectors. These new features 
are then used as the inputs of HHT-WSVM to build soft sensing of diesel oil solidifying point. 
The simulation test shows that the method is is effective and correct. 

 
2. Hilbert-Huang Transform Theory 
2.1. Empirical Mode Decomposition 

The theory of Hilbert-Huang Transform presented the concept of the intrinsic mode and 
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introduced of the method of empirical sifting method. It is very applicable to analyze nonlinear 
and non-stationary signal which frequency is variable with time. The EMD is a highly adaptive 
decomposition. It decomposes any complicated signal into so called Intrinsic Mode Functions. 
Huang have defined IMFs as a class of functions that satisfy two conditions[14]: One is that in 
the whole data set, the number of extrema and the number of zero-crossings must be either 
equal or differ at most by one; Another condition of the IMF is that at any point, the mean value 
of the envelope defined by the local maxima and the envelope defined by the local minima is 
zero, which means the envelopes defined by the local maxima and minima, respectively, is 
locally symmetric around the envelope mean. But most of the signals are not IMFs, at any given 
time, the signal may have more than one oscillatory mode, that is why the signal should be 
decomposed into IMFs by the sifting process of EMD. While the decomposition is based on 
three assumptions: 
(1) the signal has at least two extrema: one maximum and one minimum.  
(2) the characteristic time scale is defined by the time lapse between the extrema.  
(3) if the data were totally devoid of extrema but contained only inflection points, then it can be 

dierentiated once or more times to reveal the extrema.  
Final results can be obtained by integration of the components For a given signal ( )s t , 

the IMFs, constitutive components of the signal ( )s t ,can iteratively extracted as follows: 

(1) Find all the points of local maxima and all the points of local minima in the signal. 
(2) Create the upper envelope 

1 ( )v t by spline interpolation of the local maxima and the lower 

envelope
2 ( )v t  by spline interpolation of the local minima of the input signal. 

(3) Calculate the mean of the upper envelope and the lower envelope. 
 

1 2

1
[ ( ) ( )]

2
m v t v t   (1) 

 
(4) Subtract the envelope mean signal from the input signal to yield the residual. 

 
( )s t m h   (2) 

 
(5) Iterate on the residual h  until it satisfy the stop criterion. The stop criterion is to check if the 

residual from step 4 is an IMF or not. Then it is defined as 
1c , the first IMF component from 

the data: 
 

1c h  (3) 

 
After the IMF is found, define the residue as the result from subtracting this IMF from the 
input signal. 

 

1( )s t c r   (4) 

 
(6) Repeat the sifting process from step 1 to step 5 many times with the residue as the input 

signal so that all the IMFs can be extracted from the signal ( )s t . We can obtain 2 3,, ...c c in turn. 

The sifting process can be stopped by any of the following predetermined criteria: either 
when the component or the residue becomes so small that it is less than the predetermined 
value of substantial consequence, or when the residue, becomes a monotonic function from 
which no more IMF can be extracted. So when the EMD is finished, the original input 
signal ( )s t  can be expressed as the following formula : 

 

1
i( )

n

i

c rs t


   (5) 

 
That is to say the signal ( )s t  may decompose IMF which are 

1 2, , ..., nc c c  and a residual 

which is r  . Where the number of  IMF  is n . 
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2.2. The Hilbert Spectrum 
The Hilbert transform is often applied to the analysis of the linear and nonlinear system. 

For an arbitrary time series ( )X t , the Hilbert Transform, ( )Y t  is defined as 
 

1 ( )
( ) d

X
Y t

t

 






   (6) 

 

With this definition, ( )X t  and ( )Y t  form the complex conjugate pair, so we can have an 

analytic signal, ( )Z t  as 
 

i ( )( ) ( ) i ( ) ( )e tZ t X t Y t a t     (7) 
 

in which 2 2 1/ 2( ) [ ( ) ( ) ]a t X t Y t   (8) 
 

( ) a rc ta n ( ) / ( )t Y t X t   (9) 

 
The restrictive conditions of IMF guarantee that the meaningful instantaneous frequency 

can be provided by this definition. After performing the Hilbert transform on each IMF 
component, the data ( )X t  can be expressed in the following form:   

 

j ( )d

1

( , ) Re ( )e i
n

w t t

i
i

H w t a t


   (10) 

 

Here the residue r is missed on purpose, for it is either a monotonic function, or a 
constant. This frequency-time distribution of the amplitude is designated as the Hilbert 
amplitude spectrum or simply Hilbert spectrum. In order to build soft sensing by EMD, each 
mode energy which has already decomposed is defined as follow:  

 

2

1

( )
n

i i
i

E a t


   (11) 

 
 

3. Wavelet Support Vector Machine  
3.1. Support Vector Machine Regression 

Support Vector Machine (SVM) method was proposed by Vapnik in 1995 [7]. It is 
powerful for the problem with small sample, nonlinear, high dimension, and local minima. The 
basic idea of the SVM regression is to map the input data into a feature space via a nonlinear 
map. In the feature space, a linear decision function is constructed. Set the training sample 

1{ , }n
i i ix y  , ix R as the input vector , and set iy R as the corresponding export value. The 

number of training sample is n. In SVM, the regression function is approximated by the following 
function:  

 

( ) ( )f x x b     (12) 
 

where   denotes the weight vector, ( )x  denotes the high-dimensional feature space 

and b denotes the bias term. The following formulae can be obtained by minimizing the risk 
function to coefficient w and b: 
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where i  and *
i  are slack variables and   is the accuracy demanded for the approxiation. 

This constrained optimization problem is solved using the following Lagrangian form: 
 

, 1

,

1 1

1
( )( ) ( )

2
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( ) ( )

n
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Finally , the corresponding regression function Eqn. (12) can be directly expressed as 

follows : 
 

*

1

( ) ( ) ( ) ( )
n

i i i j
i

f x x b K x x b   


        (15) 

 
( )i jK x x  is t he nuclear function , and ( ) ( ) ( )i j i jK x x x x    . 

 
3.2. Wavelet Support Vector Machine (WSVM) Algorithm 

The procedure of Wavelet support vector machine (WSVM) can be shown from 
Figure 1 and described as:  

 
 

 
 

Figure 1. Framework of Wavelet support vector machine 
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Step 1: Inputing data after preprocessing.   
Step 2: Initializing the parameters of WSVM, which are Lagrangian multiplier i  *i  

threshold b  and so on. 

Step 3: Calculating the objective function through training samples. Obtaining i  *i  b  

through improved SMO algorithm. 
Step 4: Calculating the wavelet kernel through the followed formula. 
 

*

1 1

[ ]( ) ( )
dn

i i
i

j j
i

i j

x x

a
f x b 

 

 


   (16) 

 

Step 5: Calculating the error function until stop conditions are satisfied, otherwise 
returns step 3. 
 
 
4. Simulation and Analysis 
4.1. Processing Procedure 

Figure 2 is the flow chart of soft sensing using HHT and WSVM.  
 
 

 
 

Figure 2.  The framework of HHT-WSVM 
 

 
4.2. Data Selection 

The data diesel oil solidifying point was obtained at Soutwest Research Institute (SWRI) 
on a project sponsored by the U.S. Army. And we can download from [15]. In this article we 
select freezegatest data as research objective. It includes 401 measured varibles and 250 
samples.  

The outliers had been removed by 3   edit rule and three five-point smoothing method 
[16] beforhead. These 201 samples of pretreated were randomly divided into training data and 
test data. In which 101 of these samples were used to model training, and the remaining 100 
were used as a test data set. 
 
4.3. The Extract Feature of IMF Energy 

In this paper, random signal of freezegatest data was decomposed by HHT. In which, 
EMD not only come from the feature of signal but also overcome scheduling base function 
which wavelet often select before decomposing. So EMD possessed favorable local 
adaptability. From above analysis, we can calculate each mode energy according formula (11). 
At last the each energy can be normalized by the maximal energy. 
 
4.4. Result and Discussion 

Root mean squared error (RMSE) ，  maximal absolute error (MaxAE) and mean 
absolute error (MeanAE)  are used to evaluate the generalization performance of these 
algorithms, which are as follows: 
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ˆax max i iM AE y y   (18) 
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1

1
ˆ

n

i i
i

MeanAE y y
n 

   
 
  (19) 

where iy  and îy are respectively actual value and prediction value. 

The Morlet wavelet is selected to construct the SVM kernel function and form the 
WSVM. Which is as follow: 
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In order to evaluate the improved algorithm, in this section three typical regression 
datasets are selected to test it. which are as follows: KPCA-LSSVM method, HHT-SVM method 
and HHT-WSVM method. The predication error of three soft sensing methods are at below table 
1. It can be seen clearly that HHT-WSVM method has better value on RMSE and MaxAE. 

 
 

Table 1. The Predication Error of Three Soft Sensing Methods 
 KPCA-SSVM HHT-SVM HHT-WSVM 

RMSE 0.6137 0.5037 0.0985 
MaxAE 2.0696 4.0616 0.1096 

MeanAE 0.8302 0.2537 0.0097 

 
 
The predication results of three soft sensing methods are at below figures. Compared 

with Figure 3 and Figure 4, Figure 5 shows that the estimated outputs of soft sensor match the 
real values and follow the varying trend very well. 
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Figure 3.  Prediction results based on KPCA-
LSSVM 
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Figure 4.  Prediction results based on HHT-
SVM 
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Figure 5. Prediction results based on HHT-WSVM 
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5. Conclusion 
In this article a kind of soft sensing is proposed by combining Hilbert-Huang transform 

(HHT) combined with wavelet support vector machine (WSVM) is put forward.Firstly the method 
analyzes the intrinsic mode function (IMF) obtained after the empirical mode decomposition 
(EMD), then extracts IMF energy feature as the input feature vectors of the wavelet support 
vector machine. Based on the wavelet analysis and conditions of the support vector kernel 
function, a novel multi-dimension admissible support vector wavelet kernel function is 
presented, which is a multidimensional wavelet kernel, thus enhancing the generalization ability 
of the SVM. The proposed method is used to build soft sensing of diesel oil solidifying point. 
Compared with other two models, the result shows that HHT-WSVM approach has a better 
prediction and generalization. 
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