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 Online medias are currently the dominant source of Information due to not 

being limited by time and place, fast and wide distributions. However, 

inaccurate news, or often referred as fake news is a major problem in news 

dissemination for online medias. Inaccurate news is information that is not 

true, that is engineered to cover the real information and has no factual basis. 

Usually, inaccurate news is made in the form of news that has mass appeal 

and is presented in the guise of genuine and legitimate news nuances to 

deceive or change the reader's mind or opinion. Identification of inaccurate 

news from real news can be done with natural language processing (NLP) 

technologies. In this paper, we proposed bidirectional encoder 

representations from transformers (BERT) for inaccurate news identification. 

BERT is a language model based on deep learning technologies and it has 

found effective for many NLP tasks. In this study, we use transfer learning 

and fine-tuning to adapt BERT for inaccurate news identification. The 

experiments show that our method could achieve accuracy of 99.23%, recall 

99.46%, precision 98.86%, and F-Score of 99.15%. It is largely better than 

traditional method for the same tasks. 
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1. INTRODUCTION  

Online medias are currently the dominant source of information due to not being limited by time and 

place, fast and wide distributions [1], [2]. Inaccurate news or often referred as fake news is a major problem 

in news dissemination for online medias today. Inaccurate news is information that is not true that is 

engineered to cover actual information. It has no factual basis which is made in the form of news that has 

mass appeal and is presented in the guise of genuine and legitimate news nuances to deceive or change the 

reader's mind. Inaccurate news is dangerous because the writings or contents on the news is disseminated by 

irresponsible sources. Inaccurate news could change the mass opinions and hence affecting the society on 

making wrong decisions or actions that can later harm individuals or other groups [3]-[6]. Inaccurate news 

also more often appears on political elections to seek sympathy and increase the number of votes even to 

attack political opponents [7]. 

Therefore, it is important to have tools to detect inaccurate news. By doing so, the news that is 

consumed by the public can be verified for truth,  and hence reduce the expansion of inaccurate news and 

impose penalties on the creators or sites that widen and initiate hoaxes [3]. Natural language  
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processing (NLP) technologies, a part of artificial intelligence which centralize learning on natural language 

processing or human language to communicate [8], [9] could be implemented for this purpose. 

Fake news detection is a quite active studies in NLP and several studies have explored algorithms in 

solving inaccurate news detection. In [10], term frequency-inverse document frequency of bi-grams and 

probabilistic context-free grammar is used as features and Support vector machines, stochastic gradient 

descent, gradient boosting, bounded decision trees, and random forests are used as classifiers. The study 

found that term frequency-inverse document frequency (TF-IDF) and the stochastic gradient achieved 

accuracy of 77.2%. In [7], naïve bayes (NB) is compared with hybrid convolution neural network and 

recurrent neural network models. The comparison results state that research using the deep learning model 

gets 82% accuracy. Various features such as count vectors, TF-IDF by applying word level, N-gram level 

and character level, and word embedding are evaluated in [6] for inaccurate news detection in Twitter. The 

results show that support vector machine (SVM) has an accuracy of 89.34% with TF-IDF and Word2Vec. 

feed-forward (FF) and back-propagation (BP), neural networks classification algorithms are used in [4]. The 

study achieved of 78.76%. In [5], TF-IDF with bag of world and n-gram are used as feature extraction and 

deep multi-layer perceptron (MLP) are used as classification on 600 datasets of inaccurate news in Indonesia. 

The study achieved 83% accuracy, precision, 84%, recall 0.73, and F1-score 78%. In [3], count vectorizer, 

TF-IDF vectorizer, and word embedding followed are usd with SVM, logistic regression, decision tree, 

random forest, XG-Boost, gradient boosting, and deep learning neural networks. The best results are 

achieved for TF-IDF with SVM with 94% accuracy results. 

One recent technology in NLP called bidirectional encoder representations from transformers 

(BERT) [11]. BERT introduces a two-ways training for a transformer, a deep learning architectures that fits 

to deal with sequence data. BERT has been used in various NLP problems such as the stanford sentiment 

treebank (SST) sentiment classification [12], the classification of people's livelihood texts [13], relation 

extraction in chinese medical texts [14] and website category classification [15]. These studies shows that the 

implementation of BERT achieve most recent results to solve many problems in text classification. In this 

study, we propose to use BERT with fine tuning for classification of inaccurate news. 

 

 

2. PROPOSE METHOD 

Bidirectional encoder representation of transformers (BERT) is a proposed model to perform 

natural language processing (NLP) tested with bidirectional representation and is based on pre-training 

neural network techniques [11], [16]. BERT is determined from the transformer methodology and uses the 

attention mechanism. Attention mechanism is obtained by adopting encoder-decoder architectures to 

transformers architectures with the aim to find the “summary” of the data with encoder and then the 

decoder translate them. In this sense, the transformers try to find mindfulness and find a way of looking at 

the relationships between words in a particular sentence [17], [18]. Currently, BERT is one of the most 

powerful representations of context and word.  

BERT is designed to be able to distinguish a process that has a different meaning.  BERT uses 

unlabeled in designing deep bidirectional representations by moving the context left and right across all 

layers [11], [19]. The results of the previously trained BERT model can then be tuned with one output 

layer to create a model for performing various tasks including answering questions, language inference 

without substantial modification of the task-specific architecture. BERT has the latest results on eleven 

problem solving tasks in natural language. the BERT model is conceptually simple and empirically  

strong [20]-[22].  

In this study, we use pre-training BERT and then fine tune it for inaccurate news detection. The 

pre-training modeling is carried out on data that does not have a label and fine-tuning initializes the 

parameters for training and in fine-tuning modeling the data used are labeled data [11], [17]. The model of 

BERT is shown in Figure 1.  

First, we adopt google BERT pre-training model. The encoder layer of BERT consists of token 

embedding layer, segment embedding layer and position embedding layer [17], [23]. BERT uses 

transformer, an attention to the mechanism in studying the relationship between the meaning or context 

contained in the text between one word and another or in sub words. Transformer consists of two different 

mechanisms which are predictive encoders for tasks [24], [25]. BERT transformer encoder reads the entire 

word to build a model in learning to understand the meaning of words from the words in the surround ings.  

We retrain the BERT model to our inaccurate news task. By doing Pre-trained and fine tune we could 

adapt BERT model only using a small corpus for inaccurate news detection [12], [17]. The representation 

of BERT is shown in Figure 2. 
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Figure 1. BERT model [11] 
 
 

 
 

Figure 2. BERT representation [11] 
 

 

3. RESEARCH METHOD 

We evaluate our method on inaccurate news data taken from the kaggle website. The dataset has 

28,711 news data which comprise of 12,999 inaccurate news and 15,712 true news. The data set is news from 

100percentfedup, 21stcenturywire, abcnews, abeldanger, abovetopsecret, activistpost, addictinginfo, 

blacklistednews, collective-evolution, counterpunch, dailywire, New York Times, Cable News Network 

(CNN), Atlantic, Fox News, National Review, Guardian, Reuters, Washington Post and Vox [26]. 

We divide the data into 2 parts: training data and testing data randomly with ration of 80% training 

data and 20% testing data. The next stage is data are passed through the BERT Tokenizer process. 

Hyperparameter settings in data pre-processing are 350 words for each column and a maximum of 35,000 

features. BERT Tokenizer specifically for pre-processing BERT model data and all vocabulary is available. 

We apply learning rate 2e-5 and epoch value=3. This is based on our empirical observations that only small 

number of epoch is required to re-train the BERT model. We also apply Naive Bayes-SVM (NBSVM) as 

reference methods in the study. 
 

 

4. RESULTS AND DISCUSSION 

The comparisons of BERT and NBSVM is shown in Figure 3. It is clear that BERT achieves better 

results than NBSVM, confirming the effectiveness of our method. Need to be noted that the results is 

obtained when we use only 3 epochs for BERT while we need 25 epochs for NBSVM. In this study the 

results of the Performance Measure on BERT fine-tuning in the form of accuracy of 99.23%, recall 99.46%, 

precision 98.86%, and F1-score of 99.15% are results that have been proven to provide good performance.  

The progression of BERT fine-tuning from epoch 1-3 is shown in Figure 4. The bar chart shows an 

increase in the performance measure which is getting higher with an increase in the epoch value. For the 

epoch value of 1, the method we propose gets a higher value with the best value on the NB-SVM method. 

Then the increase in epoch 2 gives a quite different difference and finally with the epoch 3 value the increase 

still occurs but is not so different from the epoch 2 value. 

The progression of NBSVM from epoch 3-25 is shown in Figure 5. The bar chart shows an increase 

in performance measure when the epoch value is further increased in the NBSVM model. However, it can be 

seen after epoch 22, the progression of the performance is stable, indicating that the best performance is 

achieved when epoch is around 20. Even with more epochs, NB-SVM is still worse than our method.  



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 22, No. 3, June 2021 :  1667 - 1671 

1670 

  

 

Figure 3. Comparisons of BERT and NBSVM 

 

Figure 4. Performance measure BERT fine-tuning 

epoch 1-3 

 

 

 
 

Figure 5. Performance measure NBSVM epoch 3-25 

 

 

5. RESULTS AND DISCUSSION 

In this paper, we propose pre-trained BERT and fine tuning for inaccurate news detection. We 

compare it with NBSVM. Our experiments confirm that our method achieve better performance when with 

smaller number of epoch. However, need to be noted that BERT is highly computational models and efforts 

to reduce computational load of BERT is needed.  

In the future, we plan to use combination models (hybrid) to further improve the results of the 

performance measure accuracy, precision, recall and f-score on the detection of inaccurate news. 

Combinations of features and the use of feature learning as inputs for BERT is also our future plan. We also 

plan to use BERT for indonesian inaccurate news detection. It is also interesting to see how BERT perform 

for other natural language processing problems such as spam detection in SMS or e-mail, text classification, 

sentiment analysis, detection of emotions from text for Indonesian data. 
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