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 YouTube is a social media that has billions of users, with this can be used as 
a promotional media, trends, business, and so forth. This study aims to 
analyze the correlation between YouTube videos by utilizing hashtags on 

video using graph theory. Data collection in this study uses scraping 
techniques taken from the YouTube website in the form of links, titles, 
keywords, and hashtags. The method used in this research is social network 
analysis, the measurements used in this study are degree centrality and 
betweenness centrality. The results of this study indicate that the most 
popular hashtags with the keyword search for "viruses" are #KidflixPT, 
#Portugues, and #Mondo with degree centrality values equal to 0.071875. 
and the correlation between the most closely related videos about 
#Coronavirus with a value of betweenness centrality of 0.082626. 
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1. INTRODUCTION  

Social media is a technology that is currently closely related to human life, it is inconceivable that 

one day the world will lose all of its technology. Social media is used for various purposes such as 

promotions, business, hospitality, and so on. Social media that is popular right now is YouTube which is a 

web-based video sharing social media. Many people use YouTube to share videos on various topics such as 
news, activities (vlogs), tutorials, and so on. With billions of users, YouTube has a very large data set. 

Therefore, by analyzing the data set can find new correlations [1], [2]. Many methods for analyzing social 

media data sets, like text analytics, topic modeling and including social network analysis (SNA) [3]-[5]. 

SNA is a methodology that emerged based on graph theory [6]. In addition, SNA has been 

successfully applied to many research domains [6]-[8]. YouTube is a free platform from Google that has 

billions of users and people usually watch hundreds of millions of hours on YouTube and generate billions of 

viewers [9], [10]. This can be used by content creators to find out the right trends, behavior, and #hashtags in 

promoting their videos. 

In this study, the authors analyze YouTube data to find out the correlation between videos by utilizing the 

#hashtag in the video using graph theory. In addition to knowing the correlation between videos, in the future, it is 

expected to find out the #hashtags that are most popular related to certain video topics. Data retrieved using the 

scrapping technique with the python programming language. The attributes used in this study are links, titles, 
keywords, and # hashtags. After the data is obtained, researchers can use it for calculations, explanations, and 

simulations [11], [12]. The measures used in this study are the degree centrality and betweenness centrality. 
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This study proposes the use of the hashtag modeling approach to the network on the YouTube site to 

find the relationship between the hashtag and determine the most popular hashtag on the YouTube site with 

the network analysis approach. This approach is a new approach to determine the relationship between videos 

and determine the most popular videos using keywords and hashtags. 

 

 

2. LITERATURE REVIEW 

2.1.   Graph 

A graph is a mathematical approach which is the main approach in SNA. Graph theory is derived 

from a mathematical investigation carried out by Euler and provides a method for studying all types of 
networks [13], [14]. Informally, a graph is a group of objects called nodes connected by edges. Usually, 

graphs are described as a set of points connected by lines [15]. 

There are two ways to describe relationships in a graph, namely directed graph and bonded-tie 

graph. A directed graph is a collection of nodes that are connected by a direct line, while a bonded-tie graph 

is a collection of nodes that are connected to a directionless line. A simple graph example can be seen in 

Figures 1 and 2. 

 

 

 
 

Figure 1. Simple graph 

 
 

Figure 2. Directed graph 
 

 

2.2.   Social network analytics 

Social network analysis (SNA) can be defined as a study of human relations through graph theory 

[16]. Through graph theory, SNA can examine the structure of social relations within a particular group to 

reveal informal relationships between individuals. It was developed to understand the interaction of actors in 

the system with 2 focus in certain social contexts [17]. The typical task of SNA involves identifying the most 

influential, prestigious or central actors, using statistical measures [18]. There are several variations in SNA, 

one of which is centrality [19], [20]. There are four ways to measure centrality, namely by degree centrality, 

betweenness centrality, closeness centrality, and eigenvector centrality. In this study, only degree centrality 

and betweenness centrality will be used. 
 

2.3.   Degree centrality 

Degree Centrality is based on the idea that important nodes are the nodes that have the largest 

number of ties to other nodes in a graph [21]. Degree centrality is measured by the total number of direct 

connections with other nodes [21], estimating the number of interactions made by a node [21]. To calculate 

the degree centrality value of the nodes in the graph can be done using the formula in (1) [22]. 

 

∁𝑫(𝒏𝒊) = 𝒅(𝒏𝒊) (1) 

 

Where d (ni) is the number of interactions possessed by this node with other nodes in the graph.  

 

2.4.   Betweenness centrality 

Betweenness centrality is used to measure a node which is the connecting role in the graph. If a node is 

the only path traveled by other nodes, such as communication, connections, transportation or transactions, then 

the node has an important role and could have a high centrality betweenness [23]. Nodes that have the highest 

betweenness centrality are nodes that have the role of being the best link between nodes in the graph [23]. To 

calculate the value of betweenness centrality can be done with the formula in (2) [22]. 

 

∁𝐵(𝑛𝑖) =  ∑𝑔𝑗𝑘(𝑛𝑖) / 𝑔𝑗𝑘  (2) 

 

Where gjk (ni) is the number of shortest paths from node j to node k that passes through node i. And 

gjk is the number of shortest paths between 2 (two) nodes in a graph. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 22, No. 2, May 2021 :  780 - 786 

782 

3. RESEARCH METHOD 

In general, this research goes through several stages, namely data collection, data preprocessing, and 

graph visualization. The flow of the research process can be seen in Figure 3. 

 

 

 
 

Figure 3. Process flow research stages 

 

 

3.1.   Data collection 

In this study, the data was taken from the YouTube website. Data is taken by a web scrapping 

technique using the python programming language. Web scrapping is a form of data mining that aims to mine 

information from websites that are different from unstructured and turn them into structured so that they can 

be understood [24], [25]. Data attributes in this study are link, title, keyword, #hashtag. Data was taken on 
February 2, 2020, with the keyword "virus" search, and the results of the video search were filtered based on 

video only and relevance. The HTML anchor tag taken to get the data in this study is "id = video-title", then 

copied as Xpath which will later be used in a python application to pull data. The results of data retrieval can 

be seen in Figure 5. 

 

3.2.   Data preprocessing 

At this stage the data will be cleared by deleting rows with no values, transforming the links 

attribute to numeric, removing spaces at the beginning and end, deleting all punctuation, changing all letters 

into lower, and repeating " FOR "to add a new line according to the number of #hashtags owned by the node. 

An example of repetition on the hashtags attributes as shown in Figure 4, links A has 3 (three) hashtags 

namely # 1, # 2, # 3, and links B has 2 (two) hashtags namely # 2, # 4. Look at Table 1. After repeating the 
hashtag attribute, the table will look like Table 2. 

 

 

 
 

Figure 4. Raw data 

 

 

Table 1. Examples of raw data 
links Hashtags 

A #1, #2, #3 

B #2, #4 
 

Table 2. Examples of final data 
Links Hashtags 

A #1 

A #2 

A #3 

B #2 

B #4 
 

 
 

After the preprocessing and looping process is finished, then the graph is visualized. 
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3.3.   Graph visualization 

At this stage, the data that has gone through the preprocessing stage will be visualized using graphs 

[26], with the size discussed in the previous sections, namely degree centrality and betweenness centrality. At 

this stage, you will also find the most influential node in the graph. In this study, the pandas package is used 

for data analysis and the NetworkX package is for network analysis [27], [28]. 

 

 

4. RESULTS AND DISCUSSION 

4.1.   Preprocessing  

At this stage the data preprocessing will go through several stages, namely deleting rows that have 
nan values (no values), repeating the hashtags attribute, case folding, and transformation (label encoder) on 

the links attribute. The encoder label is the process of transforming the values in the links attribute to numeric 

with values from 0 to n where n is a different value. This is done to make graph visualization better. For this 

preprocessing step, see Figure 5 which shows the data after pereprocessing. 

 

 
 

Figure 5. Data after preprocessing 

 

 

4.2.   Graph data visualization 

As explained in previous sections that graph is a collection of objects called nodes connected by 
edges. From the dataset that has been processed in this study, the number of nodes is 321 and the number of 

edges is 411 with an average degree of 2.5607. The graph form of the dataset that has been processed in this 

study can be seen in Figure 6. Based on the objective, which is to find out the correlation between videos and 

the most popular #hashtags based on video topics, the measures to be used are degree centrality and 

betweenness centrality. 

 

 

 
 

Figure 6. Graph visualization form preprocessing data 
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4.2.1. Degree centrality 

Degree centrality can be used as a measure to find the popularity of a node. The results of the 

calculation of degree centrality can be seen in Figure 7. From Figure 7, it can be seen that the highest degree 

of centrality is found in the hashtags #KidflixPT, #Portugues, and #Mondo. It can be assumed that the three 

(3) hashtags are the ones that have the highest popularity compared to other hashtags. 3 (three) hashtags are 

also hashtags that have the most relationship (edge) compared to other hashtags. The form of graph degree 

centrality can be seen in Figure 10. 

In Figure 8, the size of the node is based on the degree of degree centrality. The greater the value of 
the degree centrality, the greater the size of the node. Likewise, with the color of the node, the color of the 

node represents the degree centrality value of a node. 

 

 

 
 

Figure 7. Results of degree centrality calculation 

 
 

Figure 8. Graph degree centrality 
 

 

4.2.2. Betweenness centrality 

To see the relationship between videos can be used as a measure of betweenness centrality. The 

results of the calculation of betweenness centrality can be seen in Figure 9. From Figure 9, it can be seen that 

the highest value of betweenness centrality is found in the #Coronavirus hashtag. It can be assumed that the 

hashtag which has the best connecting role is #Coronavirus. And it can be assumed that the correlation 

between videos with the keyword "virus" is the most about "Corona Virus". The form of graph betweenness 

centrality can be seen in Figure 12. 

From Figure 10, it can be seen that the relationship between the video with the keyword "virus" is 

not only about "Corona Virus" but also has to do with "Wuhan", "China". It can be assumed that the most 
"Corona Virus" outbreaks occurred in or from the "Wuhan" country of "China". This can be proven by 

filtering graphs based on related words in the video title as relations between nodes. The results can be seen 

in Figures 11 and 12. 

 

 

 
 

Figure 9. The results of the calculation of 

betweenness centrality 

 
 

Figure 10. Graph betweenness centrality 
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Figure 11. Graph of video title containing the word 

"corona" 

 
 

Figure 12. Graph of video title containing the word 

"China and Wuhan" 

 
 

5. CONCLUSION  

This research was successfully conducted and answered the problem formulation and objectives of 

this study with a dataset obtained from YouTube based on the keyword search "virus". The closest 

correlation between videos with the #Coronavirus hashtag with a value of betweenness centrality of 

0.082626, and the most popular hashtag is the hashtag #KidflixPT, #Portugues, and #Mondo with a degree of 

centrality equal of 0.071875. The suggestion that the author can convey for further research is to try to 

predict the hashtag of the video taken because not all videos have a hashtag. 
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