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 This study aims to design, assess, and improve the reliability of the 

telemedicine-based system for examination and monitoring of the symptoms 

of silent hypoxia–an extraordinary symptom of COVID-19. We design a 

telemedicine system for heart rate and oxygen saturation measurement which 

consists of a photoplethysmograph Max30100 sensor, NodeMCU 

microcontroller, real-time clock module, firebase realtime database, and 

Android-based mobile application. The designed system is tested through a 

comparative test with a commercially available oximeter. A total of 85 

experiments from 40 participants in two different positions were conducted. 

Our analysis shows the accuracy rate of the Max30100 measurement is 

97.11% and 98.84%, for heart rate and oxygen saturation (SpO2), 

respectively. Bland Altman was used to appraising and visualizing the 

agreement between the two measurement devices. We further apply 

calibration to improve the accuracy of the collected data through linear 

regression, which reveals 97.14% and 99% accuracy data for heart rate and 

SpO2, respectively. Finally, a series of end-to-end remote testing is 

successfully conducted representing the real-life scenario of the telemedicine 

system. Overall, the designed system attains a reliable option for a 

telemedicine-based system for examination of the symptoms of silent 

hypoxia. 
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1. INTRODUCTION  

Silent hypoxia is a new symptom of the coronavirus COVID-19 that seems to ignore the basic of 

human physiology with which the tissue or organs of the infected patients suffer from an extraordinary low 

oxygen level without apparent signs or symptoms of respiratory distress [1]-[6]. The cause of hypoxia is 

commonly associated with an insufficient level of oxygen saturation (SpO2) within the blood (i.e., 

hypoxemia) delivering oxygen from lungs to tissue and organs [7]. As such, in normal cases, hypoxia is a 

prevalent symptom in patients with lung diseases such as pneumonia whose lungs are filled with fluid or 

cannot expel carbon dioxide efficiently [2], [8], which cause various symptoms such as difficulty in 

breathing, accelerated heart rate or pulse, changes in skin color, and/or the loses of body balance. However, 

COVID-19 patients with silent hypoxia have no apparent symptoms of this respiratory distress and often 

seem clinically well [9], which confuses the doctor [10].  

https://creativecommons.org/licenses/by-sa/4.0/
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The current pandemic of COVID-19 has invited scholars across disciplines to contribute to a better 

clinical approach to the handling of this virus. Including the extraordinary phenomenon of silent hypoxia 

found in COVID-19 patients, in which multiple discussions have called for technological interventions that 

are able to detect early changes in the oxygen saturation value [11]. For example, a senior emergency doctor 

in a hospital in New York [11] suggests that earlier handling of detection of silent hypoxia is crucial in the 

treatment of the COVID-19 patients. Most patients admitted to the hospital failed to detect their oxygenation 

and heart rate much earlier that at one point they suddenly dropped into an acute critical condition. As such, 

many doctors have emphasized the beneficial use of the “pulse oximeter” as a reliable device for an early 

warning system in dealing with the problem of pneumonia in COVID-19. However, while the pulse oximeter 

device has been increasingly useful in clinical practice, this device has a limitation as it requires physical 

contact between health workers and patients. In this regard, telemedicine is seen as a critical and urgent 

solution that can transform beyond conventional physical contact clinical practice during this global 

emergency of COVID-19 [12]. In particular, a telemedicine system can assist families and health 

professionals to conveniently monitor the patients’ oxygen saturation in regular time intervals [13]. 

A number of studies have attempted to develop telemedicine systems intended for detecting silent 

hypoxia. Iswanto and Megantoro [14], for instance, developed a system based on the Arduino 

microcontroller and MAX30100 sensor. Using the fuzzy method for the classification process, the prototype 

sends the data via Bluetooth to be displayed in the Android application. While the approach seems promising, 

the system, however, was limited in its accuracy, that the accuracy rate obtained in oxygen saturation 

measurement is at 97.04% while the accuracy rate for heart rate measurement is at 97.14%. Nevertheless, the 

previous study approach to utilize smartphones in designing telemedicine for silent hypoxia detection is 

worth noting because, as Teo [15] suggests, it has been proven as an efficient yet highly reliable assistive 

technology in the measurements of vital parameters [16].  

Drawn from the results of the previous studies, our present work attempts to develop a more 

accurate telemedicine system that obtains the data from the pulse oximeter sensor in use and transmits it to a 

smartphone display to enable distant monitoring. We use MAX30100 as the sensor with an optical 

measurement technique to detect blood volume change in the microvascular bed of tissue  

(i.e., photoplethysmograph) [17], [18]. We use Google firebase as a feasible backend in telemedicine  

system [19]-[22] that stores the captured data real-time and subsequently is displayed on a smartphone with 

an Android platform so that both intended user and health care providers can monitor the oxygen saturation 

and heart rate condition of the user remotely.  

 

 

2. RESEARCH METHOD 

2.1.  System overview 

The system, as shown in Figure 1, comprises three subsystems: the hardware (module device), 

database (firebase), and software (Android application). The hardware/module device consists of three parts: 

i) The MAX30100 sensor that collects the data input on the heart rate and oxygen saturation; ii) The 

NodeMCU ESP8266 Arduino microcontroller that processes the collected data; and iii) real-time clock 

(RTC) DS3231 module that monitors and tracks the real-time of such a data. Max30100 is integrated pulse 

oximetry and heart rate monitor sensor that combines optimized optics, a photodetector, two LEDs, and  

low-noise analog signal processing to detect heart-rate signals and pulse oximetry [23]. Before sending the 

data to the firebase, we configure the microcontroller to calibrate the collected data (from MAX30100 

output) using the linear regression and Bland Altman analysis. Bland Altman analysis is commonly used to 

compare two measurement methods, where this system will compare the MAC30100 sensor with General 

care® devices [24], [25]. Through its Wi-Fi module, the NodeMCU microcontroller sends the calibrated data 

to the firebase storing the data in a real-time fashion which subsequently sends it to the Android application. 

Figure 2 shows the flowchart of the system starting from the input (Max30100 sensor) to the output 

(the android application). When the system is on, the microcontroller continuously checks whether the sensor 

is collecting data (heart rate and SPO2), or not. Once the sensor is collecting data, the microcontroller 

calibrates the collected data and subsequently displays it in a 16x2 liquid crystal display (LCD) while also 

send it online to the database. In addition to such a calibrated data, the LCD also displays the timestamp 

based on the real-time clock module. Once the database received the real-time data, the Android application 

pops up a notification as a reminder that the sensor has sent the latest data and is ready to be displayed on the 

application. 
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Figure 1. Block diagram of the system 

 

 

 
 

Figure 2. System flowchart 

 

 

2.2.  System devising 

The wiring components of the MAX30100 module on the side of the measurement device is shown 

in Figure 3. Based on the wiring diagram, we implement the system comprising LCD, RTC module, 

NodeMCU, and Max30100. Figure 4 presents the result of our module. 

 

 

 
 

 

Figure 3. Wiring diagram 

 

Figure 4. Max30100 hardware module 
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2.3.    Software design 

2.3.1. Arduino microcontroller 

We configure the microcontroller using Arduino integrated development environment (IDE) to 

perform a series of tasks ranging from system initialization to device-database connection. The system 

initialization initiates the variables used in the module device representing the pulse oximeter, the RTC, and 

the device display. We configure and apply an authentication process for wireless fidelity (Wi-Fi)–Google 

firebase connection.  

 

2.3.2. Google firebase 

The firebase Realtime database service, as used in our system, is one of the services provided by 

firebase Google platforms which offer a wide range of products and services for application development. 

This service provides an application programming interface (API) that allows application data to be 

synchronized across users and stored in the firebase cloud. For our system, we created an account in the 

Firebase console and configured the firebase realtime database as shown in Figure 5. 

 

 

 
 

Figure 5. Google firebase console 

 

 

2.4.  Data collection 

We conducted a series of experiments for data collection to examine the reliability of our system. A 

total of 85 experiments were conducted on 40 participants (some participated in multiple experiments), 26 of 

which are female and 14 of which are male with an average age was 43 and 41 years, respectively. The 

experiments were conducted in the participants’ location. The experiments collected data on participants’ HR 

and SpO2 in the sitting and supine position, all of which were conducted for about 5 months from  

[July–November 2020] in our participants’ location. 

 

 

3. RESULTS AND DISCUSSION 

Table 1 (see appendix) presents the overall results of our experiments. We analyze the level of 

accuracy of our experiments by comparing our generated data from MAX30100 to the commercial HR and 

SpO2 measurement device named General care®. Table 2 presents the comparison of the collected data 

between Max30100 against the commercial device. Overall, the mean and standard deviation between the 

data from the commercial device and Max30100 are quite alike. 

 

 

Table 2. Comparison of the heart rate and SpO2 measured by the General care® device and Max30100 sensor 

    
 HR calculated by 

General care® 
HR calculated by 

Max30100 
SpO2 calculated by 

General care® 
SpO2 calculated by 

Max30100 

Mean 79.16470588 78.22270588 97.694118 97.105882 

Median 80 78.5 98 98 
Standard 

deviation 

10.42187153 10.9793188 1.3889318 1.4311461 

Standard error 
of the mean 

1.13041 1.190874327 0.1506508 0.1552296 

Regression equation y= 0.91772x+7.37803  y=0.52168x+47.0362 

Slope 0.917721705  0.5216767 

Interception 7.378030835  47.036242 
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In (1) and (2) are used to examine the accuracy and error rate of the sensor output data  

(Table 1), resulting in a fairly low error value of 2.89% and an accuracy of 97.11% for the heart rate data. 

The data calibration of SpO2 also results in desirable outcomes, where the error value is 1.15% with a high 

level of accuracy of 98.84%.  

 

% 𝐸𝑟𝑟𝑜𝑟 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒(|𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝐶𝑎𝑟𝑒®𝑟𝑒𝑎𝑑𝑖𝑛𝑔−𝑀𝐴𝑋30100 𝑟𝑒𝑎𝑑𝑖𝑛𝑔|) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ( 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝐶𝑎𝑟𝑒® 𝑟𝑒𝑎𝑑𝑖𝑛𝑔) 
 𝑥 100% (1) 

 
% 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100% − %𝐸𝑟𝑟𝑜𝑟 (2) 

 

Figure 6 shows the plot of Bland Altman's analysis results, in which the solid line represents the 

mean bias values of 0.94 and 0.59 for HR and SpO2, respectively. The dotted line represents the limit of 

agreement (LOA) in the upper value, while the dashed line represents the lower value of  LOA. Based on the 

figure, we found 4 outlier data out of the total 84 data in HR. On the other hand, we found 2 outlier data (out 

of 84) in SpO2.  

 

 

  
 

Figure 6. Plots of the Bland Altman for differences in Heart Rate and SpO2 measurements between the 

general care and Max30100 sensor 
 

 

We applied a calibration to further increase the accuracy of the data before sending it to the firebase 

database. The data captured by MAX30100 is calibrated through the linear regression analysis to obtain more 

accurate results on this system. The formula of the linear regression for each measuring parameter is in  

Table 2. The result of this calibration process increases the accuracy to 97.14% and 99% for heart rate and 

oxygen saturation, respectively. Based on these results, it can be implied that the Max30100 sensor is 

considerably accurate in measuring heart rate activity and oxygen levels in the blood. On measurement side, 

the LCD displays the results of heart rate and SpO2 data as seen in Figure 7.  

Finally, Figure 8 shows the outcomes in the firebase database (submitted from NodeMCU 

microcontroller) and the display in Android apps. We experimented with remote testing in which one field 

assistant was conducting the direct measurement using our system device on a research participant and 

another one through a zoom meeting was receiving the data over the internet network in a smartphone, thus 

enacting a successful telemedicine real-life scenario. 

Overall, our present work has extended the previous research, particularly in [14], since it offers a 

more reliable system due to three enhancements. First, our system has enhanced the accuracy and reliability 

by applying a calibration to the proposed solution. Second, our system has been tested with far richer actual 

experimental data which produces more reliable analysis. Third, our designed system is able to communicate 

with the database and smartphone through an internet network, rather than Bluetooth, which represents a 

real-world scenario of telemedicine. 
 

 

 
 

Figure 7. Display results on the LCD side of the measurement 
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Figure 8. Results of a telemedicine-based experiment: firebase database (left), and an Android application 

(remotely through zoom meeting) that displays the measurement results (right) 
 

 

4. CONCLUSION 

This study has succeeded in designing, assessing, and improved a telemedicine-based system for 

examination and monitoring of the symptoms of silent hypoxia. The designed system, which consists of a 

photoplethysmograph Max30100 sensor, NodeMCU microcontroller, real-time clock module, firebase 

realtime database, and Android-based mobile application, has been successfully remote-tested to measure 

heart rate and oxygen saturation, calibrated, sent, and displayed in a smartphone. Through a comparative test 

with a commercially available oximeter, this study shows the reliability of using the Max30100 sensor as an 

alternative solution for the measurement of heart rate and oxygen saturation.  

Nevertheless, this study has some limitations that in turn offers an opportunity for future research. 

First, the experiments were conducted on participants with a relatively similar range of age, thus we 

recommend the future research consider a more varied population of subjects and possibly larger samples. 

Second, future research could extend the analysis by performing and providing a classification of the 

captured data so that the information presented at end-user is more descriptive and beneficial. 

 

 

APPENDIX 

 

 

Tabel 1. Measurement of heart rate ans SpO2 using general care and Max30100 

No Gender 
HR General Care®-Max30100 SpO2 General Care®-Max30100 

General Care® MAX 30100 %Error General Care® MAX 30100 %Error 

1 F 46 47.1 2.39 97 98 1.03 
2 F 79 76.11 3.66 99 99 0.00 

3 M 76 70.23 7.59 99 96 3.03 

4 F 83 80.32 3.23 99 99 0.00 
5 F 85 85.45 0.53 99 96 3.03 

6 F 68 68.25 0.37 98 98 0.00 
7 F 77 72 6.49 99 99 0.00 

8 M 78 78.35 0.45 96 95 1.04 

9 F 84 83.96 0.05 96 97 1.04 
10 F 84 79.86 4.93 99 99 0.00 

11 F 83 80.32 3.23 99 99 0.00 

12 M 85 86.3 1.53 99 99 0.00 
13 F 77 72 6.49 99 99 0.00 

14 M 46 47.1 2.39 98 97 1.02 

15 M 48 46.3 3.54 97 98 1.03 
16 F 68 58.25 14.34 98 98 0.00 

17 F 77 78.95 2.53 98 95 3.06 

18 F 72 73.96 2.72 98 95 3.06 
19 M 85 85.45 0.53 99 97 2.02 

20 M 85 82.42 3.04 99 99 0.00 
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Tabel 1. Measurement of heart rate ans SpO2 using general care and Max30100 (continue) 

No Gender 
HR General Care®-Max30100 SpO2 General Care®-Max30100 

General Care® MAX 30100 %Error General Care® MAX 30100 %Error 

21 F 76 76.23 0.30 99 98 1.01 
22 F 73 73.55 0.75 99 99 0.00 

23 M 86 90.01 4.66 96 98 2.08 

24 F 78 78.35 0.45 96 95 1.04 
25 F 69 67.48 2.20 99 97 2.02 

26 F 69 68.79 0.30 99 98 1.01 

27 F 87 82.63 5.02 99 99 0.00 
28 F 87 83.28 4.28 99 98 1.01 

29 F 73 72.36 0.88 95 96 1.05 

30 F 72 72.36 0.50 97 95 2.06 
31 F 74 71.47 3.42 96 95 1.04 

32 F 96 100.85 5.05 96 96 0.00 

33 M 71 73.89 4.07 96 95 1.04 
34 M 67 66.34 0.99 95 95 0.00 

35 M 95 94.76 0.25 97 95 2.06 

36 M 76 76.91 1.20 97 95 2.06 
37 F 95 94.03 1.02 97 98 1.03 

38 M 78 82.22 5.41 95 98 3.16 

39 F 77 76.82 0.23 96 98 2.08 
40 M 95 94.03 1.02 98 98 0.00 

41 F 48 46.3 3.54 97 98 1.03 

42 F 80 77.47 3.16 99 98 1.01 
43 M 75 74.36 0.85 96 95 1.04 

44 M 75 72.95 2.73 96 95 1.04 

45 F 83 77.53 6.59 95 95 0.00 
46 F 85 82.42 3.04 99 99 0.00 

47 F 77 78.5 1.95 98 96 2.04 

48 F 83 80.2 3.37 95 96 1.05 
49 M 69 67.48 2.20 99 97 2.02 

50 F 74 75.48 2.00 97 98 1.03 

51 F 82 80.28 2.10 99 98 1.01 
52 F 85 77.57 8.74 95 95 0.00 

53 M 83 80.2 3.37 96 95 1.04 

54 F 80 78.44 1.95 99 95 4.04 
55 M 87 82.63 5.02 99 99 0.00 

56 M 84 79.88 4.90 99 98 1.01 

57 F 82 85.47 4.23 98 98 0.00 
58 F 74 75.48 2.00 97 98 1.03 

59 F 74 75.41 1.91 97 98 1.03 

60 F 78 82.22 5.41 96 98 2.08 
61 F 86 84.61 1.62 97 95 2.06 

62 F 89 88.53 0.53 96 97 1.04 

63 M 84 82.41 1.89 98 95 3.06 
64 F 90 92.97 3.30 95 97 2.11 

65 F 61 59.66 2.20 96 95 1.04 
66 M 82 78.18 4.66 98 95 3.06 

67 M 87 90.01 3.46 96 95 1.04 

68 M 68 66.95 1.54 99 97 2.02 
69 M 78 71.76 8.00 99 97 2.02 

70 M 78 72.58 6.95 98 97 1.02 

71 M 81 77.3 4.57 99 97 2.02 
72 M 80 78.57 1.79 98 97 1.02 

73 M 79 80.8 2.28 99 97 2.02 

74 M 99 103.62 4.67 99 98 1.01 
75 M 93 92.97 0.03 98 98 0.00 

76 F 90 91.06 1.18 99 98 1.01 

77 F 87 87.14 0.16 99 98 1.01 
78 F 78 73.66 5.56 99 98 1.01 

79 F 85 82.19 3.31 99 98 1.01 

80 F 81 80.13 1.07 99 98 1.01 
81 F 92 92.94 1.02 98 99 1.02 

82 F 86 85.84 0.19 99 98 1.01 

83 F 92 92.9 0.98 99 97 2.02 
84 F 92 92.1 0.11 98 98 0.00 

85 F 73 70.74 3.10 98 98 0.00 

Sum 6729 6648.93 245.27 8304 8254 98.3 
Average 79.16 78.22 2.89 97.69 97.10 1.15 
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