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 This paper proposes the robust proportionate adaptive filtering algorithms 

and their respective efficient very large-scale integration (VLSI) 

architectures for sparse system identification under impulsive noise, several 

types of algorithms are combined to obtain optimum results. Here, we 
rendered a relative analysis on these algorithms and the algorithms are 

mapped on to the hardware to show that the improvement is obtained with 

respect to convergence rate and hardware complexity of VLSI architectures 

and has negligible hardware overhead with improved robustness. Good 
performance and convergence rate is obtained by combining the delayed μ-

law proportionate (DMP) and least mean logarithmic square (LMLS) 

algorithms i.e. delayed µ-law proportionate least mean logarithmic square 

(DMP LMLS). Robust proportionate adaptive filter is coded in system 
verilog and synthesized using cadence genus compiler with 90 nm 

technology library. 
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1. INTRODUCTION  

The filtering problem and its solution was elaborated in [1] with the most popular adaptive 

algorithm i.e. The least mean square (LMS) algorithm, which is extensively used because of its robustness 

and simplicity in its structure. Different types of LMS algorithms addressing the various problems 

incorporated with it, is exposed and thoroughly analyzed in the literature with an extreme specialized 

importance given to error non-linearities, Gaussian and impulsive noise. Firstly, addressing the problems 

incorporated with error non-linearities. The successor variant of LMS algorithm was the least mean fourth 

(LMF) algorithm, where the regular error function becomes the error function raised to fourth of its power 

[2], which performs excellently compared with LMS algorithm in non-gaussian environment [3] with a low 

signal to noise ratio (SNR), but results in poor stability issues when the environment is a gaussian data [4]. 

So, an idea was proposed [5] by incorporating both LMS and LMF algorithms to obtain the optimistic result 

i.e. least mean mixed norm (LMMN) but it was later found to be difficult to implement in practical 

applications. 

On the other hand, a new approach inspired by the competitive methods was proposed in [6] which 

is based on the logarithmic cost functions i.e. least mean logarithmic square (LMLS) which eliminates the 

https://creativecommons.org/licenses/by-sa/4.0/
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problem faced in LMMN algorithm (combination of both LMS and LMF algorithms) by providing good 

convergence rate and stability but lacks against impulsive environment. Another algorithm proposed in the 

same [6] i.e. least logarithmic absolute difference (LLAD) shows good convergence and outperforms the 

sign-LMS algorithm (SA) [7] in impulsive environments but finds stability issues under gaussian 

environments. Whereas, SA [7] provides good convergence in impulsive environments but has a poor steady 

state response in gaussian environments. A quantized approach from kernel adaptive filtering [8] i.e. 

quantized kernel LMS (QK-LMS) which compress the area by using the redundant data for updating the co-

efficient which has the closest center provides an excellent improvement of convergence rate in impulsive 

environments and also provides reduction in area.  

To reduce the gap between the problems associated with error non-linearities, A delayed approach 

concept was proposed in [9] where the LMLS algorithms were deliberately delayed in line with the 

constraints of [10] to improve stability in the case of delayed LMLS (DLMLS) and a new variable “α” is 

introduced in the same [9] for the obtained improvement, then the same approach was used to the LLAD 

algorithm to obtain new algorithm i.e. delayed LLAD (DLLAD) which outperforms previous algorithms 

against impulsive noise environments and this can be implemented by using the technique of retiming [10]. 

The above discussed algorithms provide a new way for implementing the VLSI architecture for sparse 

system identification [11] in practical applications of filters. Now, let us discuss the literature for alternate 

way of approach for sparse system identification [11] in communication applications such as network echo 

cancellation (NEC) [12], underwater acoustic communication (UAC) [13], HD TV terrestrial transmission 

(HDTTT) [14]. 

With the advent of the above applications [12]-[15], the proportionate type algorithms [16] are one 

of the hotline topics for the researchers. These [16] type of algorithms is based on the normalized LMS 

(NLMS) algorithms which has a comparatively better convergence rate than the usual LMS algorithm and it 

can be speeded up by using different time varying step size [17]. The proportionate type LMS (PT-LMS) 

algorithms are extensively used than the previously proposed proportionate normalized LMS (PNLMS) due 

to its lower computational complexity [18]. The PNLMS algorithm [18] uses a gain proportional matrix 

which frequently updates the filter co-efficient at each step proportional to its magnitude, thus it outperforms 

the both LMS [1] and NLMS [17] algorithms in impulsive environments. But it starts diverging when 

impulsive response is a dispersive type. The performance and analysis of both PTLMS [16] and PNLMS [18] 

algorithms were shown both in first and second order convergence analysis in [19], which proposes the use of 

proportionate LMS (PLMS), which describes the same [18] with an improvement both in performance and 

convergence rate.  

In order to overcome the drawback of PNLMS [18] several algorithms were introduced to make 

PNLMS more robust against the time varying sparsity [20], [21]. In order to achieve rapid overall 

convergence when it reaches its true values, a Nominal law-based approach was proposed by introducing μ-

law PNLMS (MPNLMS) in [22] and its variant by using a small value of" "€” proximity i.e. €-Law PNLMS 

(EPNLMS) in [23]. Both the algorithms i.e. MPNLMS [22] and EPNLMS [23] are used to reduce the 

updating of gain in larger co-efficient, thus obtaining faster convergence. But both these algorithms start 

diverging in case of inputs such as speech which is correlated. Hence, wavelet domain MPNLMS 

(WMPNLMS) is used in such responses [24]. The same concept of delayed approach [9] with the constraints 

of [10] and also the method for implementing the retiming approach [15] is used for the above algorithms 

MPNLMS [22] and WMPNLMS [24], which is based on [19] PLMS type of structure, thus it provides a 

significant improvement in convergence against sparsity and complexity when applied in hardware analysis 

which gives us the newly proposed algorithms i.e. delayed MPLMS (DMPLMS) and delayed WMPNLMS 

(DWMPLMS) as shown in [25]. It is to be mentioned that an approach was proposed for building the 

algorithm in maximum correntropy criterion (MCC) in [26] which was a good choice under impulsive 

environments in terms of cost but it was outperformed by its successor improved MCC (IP-MCC) in [27]. 

The next approach to algorithms is derived purely from the above-mentioned algorithms namely 

LLAD [6], QK-LMS [8], IP-MCC [27] and SLMS [7], in which the delayed concept [9] with its constraints 

[10] and the retiming approach [15] with the MPNLMS [22] algorithm are very well combined to derive 

delayed μ-law Proportionate LLAD (DMPLLAD), delayed μ-law proportionate QK-LMS (DMPQK-LMS), 

delayed μ-law proportionate MCC (DMPMCC) and delayed μ-law proportionate sign-LMS (DMPSLMS) 

[28] provide a good convergence rate and also exhibit robustness against impulsive responses. Our 

contributions in the paper includes, Obtaining good performance and convergence rate by proposing an 

efficient algorithm by combining the delayed μ-law proportionate (DMP) and least mean logarithmic square 

(LMLS) algorithms i.e. delayed µ-law proportionate least mean logarithmic square (DMPLMLS). Very 

large-scale integration (VLSI) architecture of all robust proportionate algorithms and their application-

specific integrated circuit (ASIC) synthesis findings with respect to 90 nm complimentary metal-oxide 

semiconductor (CMOS) technology for the evaluation of overhead region for robustness enhancement. 
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2. RESEARCH METHOD 

Figure 1 shows the problem of identifying an unknown sparse system. The unknown system “Wopt” 

is designed by taking the input regressor u(n) with ‘n’ as the independent time index and providing an output 

as desirable response d(n) with respect to the observation noise v(n).  

 

 

 
 

Figure 1. Adaptive filter 

 

 

 i.e. 𝑑(𝑛) = (𝑊𝑜𝑝𝑡)𝑇𝑢(𝑛) + 𝑣(𝑛) 

 

where, 𝑢(𝑛) = [𝑢(𝑛), 𝑢(𝑛 − 1), . . . . , 𝑢(𝑛 − 𝐿 + 1)]𝑇 

 

𝑣(𝑛) =noise with variance (𝜎)2 with ′𝐿′ as the order of the filter designed. The adaptive filtering 
(𝑤) algorithm is used to estimate the unknown system (𝑊𝑜𝑝𝑡) by updating the filter co-efficient values by, 

𝑊(𝑛) = [𝑤0, 𝑤1, 𝑤2, . . . . , 𝑤(𝐿−1)]
𝑇

, 𝑊(𝑛 + 1) = 𝑤(𝑛) + 𝜇𝑢(𝑛)𝐹(𝑒(𝑛))where, µ is the size of adaption, 

𝐹(𝑒(𝑛))is the error cost function, in which e(n) is given by, 𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛)and the filter output 

regression is 𝑦(𝑛) = 𝑤(𝑛)𝑇𝑢(𝑛) [29]. 

The impulsive noise which comprises of two independent signals, one is the ordinary noise with 

zero mean and small variance (0.01) and second is the impulsive noise with gaussian environment of large 

variance (104) which is controlled by Bernoulli random process [24]. For each iteration the frequency of 

impulsive noise occurrence is set at 5 percent. To test the efficiency of adaptive filtering algorithms, 

normalized mean square deviation (MSD) (which offers a calculation of how similar the filter weights are to 

the corresponding optimal weights Wopt at time index n) is commonly known as a metric. The equation of 

normalized MSD. 

 

Normalized 𝑀𝑆𝐷(𝑛) =
𝛥

10 𝑙𝑜𝑔10 (𝐸 (
‖𝑤𝑜𝑝𝑡−𝑤(𝑛)‖2

2

‖𝑤𝑜𝑝𝑡‖2
2 ))  

 

 

3. ARCHITECTURE 

3.1.  Proposed robust proportinonate algorithms 

This class of algorithms is obtained by combining two or more algorithms; hence we consider three 

different types of algorithms, which are combined with the delayed µ-law algorithm to obtain the optimum 

result. The least logarithmic absolute difference (LLAD) [6], quantized kernel LMS [8], sign LMS [7] and 

improved maximum correntropy criterion [27] which are pretty good at impulse environments. Algorithm 1 

is modelled by combining its error computing process with the delayed µ-law algorithm to obtain 

improvement which is shown for QKLMS [8] as shown in (1) [28].  
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Algorithm 1. DMPLMS Algorithm with 𝐹(𝑒(𝑛)) 
Initialization: 𝑤(𝑖) = 0,0 ≤ 𝐼 ≤ (𝐿 − 1) 
Parameters: 𝑤(𝑖) = 0,0 ≤ 𝐼 ≤ (𝐿 − 1)𝛼, 𝜇, 𝛿𝑝, 𝜀, 𝜎 
Updation: 

𝑒(𝑛) = 𝑑(𝑛) − 𝑤𝑇(𝑛)𝑢(𝑛) 

𝛾𝑖(𝑛) = 𝑙𝑜𝑔2 (1 +
|𝑤𝑖(𝑛) + 𝜌|

2−𝑘
) 

𝑔𝑖(𝑛) =
𝛾𝑖(𝑛)

1
𝐿

∑ 𝛾𝑖(𝑛)𝐿−1
𝑖=0

, 0 ≤ 𝑖 ≤ (𝐿 − 1) 

𝐺(𝑛) = 𝑑𝑖𝑎𝑔(𝑔0(𝑛), 𝑔1(𝑛), . . . . , 𝑔𝐿−1(𝑛)) 

𝑤(𝑖 + 1) = 𝑤(𝑖) + 𝜇. 𝐺(𝑛). 𝐹(𝑒(𝑛)) 

 

𝐹(𝑒(𝑛)) =
𝑒(𝑛)

(1+𝛽|𝑒4(𝑛)|)
 (1) 

 

As shown in (1) was obtained by incorporating QKLMS [8] with delayed µ-law algorithm [25]. 

when undergone into impulsive noise if e(n) becomes large the function of error will be equal to 0, hence 

showing good robustness against it. If e(n) is small the function of error will be approximately equal to e(n) 

providing good convergence rate. The same is applicable to other algorithms shown in [28]. 

The inference drawn from Figure 2 is that robustness under impulsive environments is good in 

DMPQKLMS & DMPMCC which was shown in [28] and these two algorithms had 3-db improvement in 

[28] and this algorithm was also computed with change in parameters, which are other than from the [28] to 

obtain an overall improvement of 12-db with respect to DMPLLAD [28] which was computed with L = 64, 

Sparsity (Sm) = 0.9, step size µ = 0.0078125 and cost function [αqklms, αmcc ] = [0.75,1] which was 

adjusted to obtain optimistic results. 

 
 

 
 

Figure 2. Performance of DMPSLMS/DMPLLAD/DMPMCC/DMPQKLMS 
 

 

From the previously computed results it was evident that combination of algorithms produces better 

results both in terms of steady state and convergence under impulsive environmnets. Hence in order to obatin 

improvement and also good convergence rate Delayed µ-law algorithm with Least mean logarithmic square 

LMLS [6] DMPLMLS is proposed in this paper which has more improvement of convergence rate and 

steady state with reference to DMPMCC and DMPQKLMS [28]. 

The delayed µ-law least mean logarithmic square (DMPLMLS) was obtained by incorporating 

𝐹(𝑒(𝑛)) as shown in (2) of DMPLMLS in Algorithm 1. 
 

𝐹(𝑒(𝑛)) =
𝛼𝑒3(𝑛)

(1+𝛼|𝑒2(𝑛)|)
 (2) 

 

From (2) it can be observed that, e(n) becomes more when impulsive noise occurs, then α minimizes 

the value in such a way that F(e(n)) is almost zero, providing robustness against impulse noise. If e(n) is 

small, then it continues its computation to obtain good convergence rate and steady state performance which 

is shown in Figure 3. 

Figure 3 shows the performance analysis of DMPMCC/DMPQKLMS/DMPLMLS in which the 

DMPLMLS has almost same convergence factor and becomes stable with increase in number of iterations. 
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Here 64,L  Sparsity (𝑆𝑚) = 0.9, step size 0.0078125,  zero mean with unit convergence (SNR=30db) 

and cost function [αqklms , αmcc, αlmls]=[0.75,1,16] is adjusted to get the same convergence. DMPLMLS has a 

good steady state performance and convergence rate too, the proposed algorithm DMPLMLS shows an 

improvement of 8db and outperforms other two algorithms significantly. Figure 4 represents the Error 

computing block used in LMLS algorithm which is derived using logarithmic number system. 
 

 

 
 

Figure 3. Performance of DMPMCC/ DMPQKLMS/DMPLMLS 

 

 

 
 

Figure 4. Error computing block for LMLS 

 

 

4. RESULTS AND DISCUSSION 

The simple design Figure 5 used to realize the generated algorithms is shown in Figure 5(a) and the 

detailed description of one of the tap co-efficient block is shown in Figure 5(b) [29]. It should be noted that 

the architecture used is based on logarithmic number system for VLSI calculations, this architecture is 

integrated into the F(e(n)) block of LLAD, QKLMS, MCC and LMLS architecture to realize it in hardware. 

All derived algorithms are implemented in the System Verilog framework and synthesized using the Cadence 

Genus architecture consistent with standard cell library 90 nm technology. A 16-bit fixed point representation 

is used for all the designs. Filters of order 32 and 64 bit are considered and results obtained are data arrival 

time (DAT) which provides the timing of critical path in the circuit, adaption delay (AD) is used to indicate 

the number of cycles, area-delay product (ADP) gives the product of area and DAT, the total Delay in the 

circuit is indicated by D, energy per sample (EPS) provides the product of power and DAT of the circuit 

which are listed in Table 1. The findings obtained from simulations with white gaussian feedback at full 

clock frequency show us how stable the derived algorithms are in impulsive environments. 
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Table 1. Synthesized results of derived algorithms using 90 nm CMOS process 
DESIGN FILTER 

LENGTH 

DELAY 

(ns) 

DAT 

(ns) 

FREQ 

(MHz) 

AD AREA 

(µm2) 

ADP 

(µm2 * ns) 

POWER 

(mw) 

EPS 

(mw * ns) 

DLMS 

[9] 

32 2.37 5.31 189 5 9010 21353.7 0.091 0.21 

64 2.68 5.31 189 5 19918 53380.24 0.182 0.487 

DMPLLAD 

[19] 

32 2.37 5.31 189 6 8920 21140.4 0.046 0.109 

64 53.17 5.31 189 6 113641 6042291.9 3.41 181.3 

DMPQKLMS 

[28] 

32 27.41 5.31 189 6 44811 1228269.5 0.943 25.84 

64 45.03 5.31 189 6 128786 5799233.5 3.78 170.21 

DMPMCC 

[28] 

32 54.01 5.31 189 7 29347 1585031.4 1.13 61.03 

64 130.85 5.31 189 7 93718 12263000.3 8.08 1057.26 

Proposed method [DMPLMLS] 32 26.82 5.31 189 7 42072 1128371.04 0.82 21.99 

64 50.76 5.31 189 7 123218 6254545.68 3.44 174.61 

 

 

DAT: Data arrival time, AD: Adaption delay ADP: Area delay product, EPS: Energy per sample 

 

 
(a) (b) 

 

Figure 5. Basic architecture used to realize the derived algorithm: (a) DLMS architecture and  

(b) Tap architecture 

 

 

As shown in Table 1, it shows the performance parameters obtained from synthesis of the derived 

algorithms. The proposed algorithm DMPLMLS has approximately 3% area improvement when compared 

with DMPQKLMS and 23% increased with respect to DMPMCC algorithm. 

A power reduction of 9% and 57% is obtained with respect to DMPQKLMS and DMPMCC 

algorithms respectively, which is a better improvement when compared with the current work on VLSI 

architectures. The adaption delay (AD) of DMPMCC and DMPLMLS is increased by one stage resulting in 

extra pipeline stages in F(e(n)) block to meet the timing requirement with respect to DMPLLAD and 

DMPQKLMS. The derived algorithms are synthesized for filter lengths of 32 and 64 bit, compared to other 

algorithms DMPLMLS has a delay improvement of 61% with respect to DMPMCC and delay increase of 

11% with respect to DMPQKLMS.  

The area delay product (ADP) of DMPLMLS has an improvement of 49% compared to DMPMCC 

and decreased by 7% when compared with DMPQKLMS, which is low for robustness enhancement 

accomplished. From this we can conclude that DMPLMLS has an improved convergence rate of 1.25x, when 

compared with DMPQKLMS and DMPMCC. From the simulation and synthesized results obtained, it is 

evident that we can employ the DMPLMLS architecture which has better VLSI solution for the sparse system 

identification under impulsive noise environments. 

 

 

5. CONCLUSION 
It is understood that from the results obtained by incorporating algorithms from error nonlinearity 

adaption into the proportionate algorithms provides significantly improved results against impulsive noise 

environments, with negligible area overhead. In this paper we had reliable algorithms extracted and rendered 
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a comparative analysis of all the extracted algorithms in terms of convergence, overhead hardware and 

performance. We can conclude that to the best of our knowledge DMPLMLS algorithm is a better VLSI 

solution under impulsive noise environment for sparse system identification. 
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