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 Crop management including the efficient use of nitrogen (N) fertilizer is 
important to ensure crop productivity. Human error in judging the leaf 

greenness when using the leaf color chart (LCC) to estimate the rice plant N 
nutrient status has encouraged numerous researchers to implement a machine-
learning algorithm but experienced some issues in calibration and lighting. The 
datasets are created at 6.00-7.00AM (consistent lighting) and including light 
intensity, so each dataset contains RGB value and light intensity as inputs, and 
LCC value as a target. A system consists of a smartphone with an application 
that prevents user from taking an image if the light intensity is not in 2000-
3500 lux, and a computer for preprocessing and classification purposes were 
developed. The preprocessing included cropping, splitting the rice leaf images, 

and calculating the average RGB values. A k-NN classifier is implemented 
and by using a cross-validation method is found k=5 gives the best accuracy 
of 97,22%. The in-site test of the system also works with an accuracy of 
96.40%.  
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1. INTRODUCTION 

Food and agricultural policy research institute (FAPRI) and United Nations projected that the global 

rice demand from 2010 to 2035 will increase by 26%. On the other hand, in [1] showed that the rice yield from 

the top three rice production nations: India, China, and Indonesia grow very low, respectively only 1.0%, 0.7% 

and 0.4% improvement per year. Every agricultural practice that is used to improve the growth, development, 
and yield of crops is called crop management. It is important in maintaining the crop’s health to ensure crop 

productivity. Advanced technology was used by numerous researchers in detecting the plant’s health, mainly 

the plant’s stress. The implementation of unmanned aerial vehicle (UAV) for spraying pesticides and crop 

monitoring was reviewed in paper [2], In [3] discussed on prospects of UAV technology for agricultural 

production management. Several types of camera sensors and imaging techniques were used to collect data 

and images [4-5]. Image processing and machine-learning algorithm implementation also give promising 

results for analyzing plant stress [6-8].  

Y. Xue et al. [9] concluded nitrogen (N) management and irrigation using alternate wetting and 

moderate drying techniques used in improved crop management (ICM) could increase the rice yield, and make 

efficient use of N fertilizer and water compared to the local farmer practice. This paper focus on N fertilizer 

management, especially to estimate rice N deficiency. The implementation of advanced technology usually 
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leads to high-cost investment, so the Irrigated rice research consortium (IRRC) introduced a new leaf color 

chart (LCC) and updated guidelines in many Asian countries [10]. In [11] while using this LCC had 

successfully guided an optimal application of N fertilizer and achieved high rice yield. The leaf color intensity 

is directly related to the leaf chlorophyll content which also shows the leaf N status. However, the use of N 

fertilizer was higher in LCC application compared to soil plant analysis development (SPAD) chlorophyll 

meter, due to the human error in judging the leaf greenness using LCC [12]. This human error can be reduced 

by using computer science that integrates with agricultural science [13].  

Considering the popular usage of smartphones and the quality of the image that can be produced by 
today’s smartphone camera, many researchers had used it to capture the leaf images for analyzing. Combined 

with the machine-learning algorithm, the promising results in analyzing and classifying the crop N status based 

on LCC have been conducted. In [14] used k-NN algorithm to assess the printed color images of LCC and 

relatively calibrate its color, but need further research when used to assess a real leaf color and match its color 

levels with its corresponding LCC. The classification of the rice leaf color using radial basis function neural 

network algorithm concluded that the lighting of rice images can affect the result of image classification. The 

accuracy of the classification using the backlight image is 90%, higher than the one with direct sunlight which 

is 80% [15]. The other research used support vector machine (SVM) with radial basis function kernel [16]. 

This methodology had an accuracy of 98% by considering four values LCC from value 1 to value 4. The 

limitation of this work is not considering value 5, which indicates a high concentration of N. One of the issues 

that need to be considered is the image acquisition process is affected by ambient light. In [17] had successfully 

reduced this effect by adding a white LED with an enclosure module to illuminate the leaf while the camera 
took its image, but this practice needed extra effort and time if used in a larger field.  

 

 

2. RESEARCH METHOD 

From the data provided in the introduction section, it can be concluded that the preface works agreed 

in using advanced technology. In addition, based on more references, it is possible to combine advanced 

technology with the effective proven practice of LCC to classify the N status. So the system introduced in this 

work is designed using a smartphone camera to capture the rice leaf images and using machine-learning 

algorithm to eliminate human error in classifying the leaf color based on LCC. The former research issue in 

classifying the rice N status using machine-learning algorithm excludes the lighting condition in data training. 

This work proposes a new perspective in solving the issue by having consistent lighting of the rice leaf images 
and adding light intensity data in the classifying process. This research workflow is designing a system, creating 

a dataset, building an android application for images acquisition, and building a classifier. 

 

2.1.   System design 

The system input is a rice leaves image captured by a smartphone camera. It consists of 20 leaves 

picked randomly from an area of a rice field to be observed. These rice leaves will be arranged and stuck on a 

cardboard. The system consists of two parts, the first part is a smartphone as a data acquisition device and the 

second part is a computer in charge of the classifying process. The smartphone camera is used to record the 

rice leaves images and light intensity (lux) simultaneously. After transferring the data to the computer 

manually, the rice leaf images will be preprocessed and its light intensity will be read. The machine-learning 

algorithm in the computer will determine the average LCC value. Figure 1 shows the system design and 
process.  

 

 

 
 

Figure 1. System design and process 
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2.2.   Creating datasets 

Numerous leaves are selected according to the international rice research institute (IRRI) guidance, 

which reflects each LCC value. The color of the leaves' middle part was compared with the LCC.The average 

LCC value is calculated from leaf images taken by a 1-megapixel smartphone camera. Direct sunlight affects 

leaf color readings and different people could interpret different readings, so the leaf color must be read and 

captured in a shading area, by the same person at the same time of the day to guarantee consistency of lighting 

data. According to [18], the recommended time to read and capture the leaf color is early morning (6 AM.) 

when the relative irradiance of the sun is higher in the visible and NIR spectrum compared to midday exposure 

(noon). This work had implemented this consistent lighting to all the images that were captured only from 6 to 

7 AM. The light intensity in this period is generally between 2000 to 3500 lux. The leaf images then will be 
cropped into 100x100 pixels image as shown in Figure 2.  

 

 

 
 

Figure 2. Image processing in creating datasets 

 

 

While the leaf images are captured, a lux meter is used to measure the light intensity simultaneously. 

Figure 3 gives an illustration of the images in different light intensity that had been collected. The RGB value 

of each leaf image is read and averaged pixel by pixel. Each dataset consists of measured light intensity, average 

R value, average G value, average B value, and LCC value. A total of 120 leaf rice images are created as 

datasets for training and testing. The datasets are distributed in 40 datasets for each LCC value in 3 different 

light intensity. So each LCC value in specific light intensity is represented by 10 datasets. Table 1 shows the 

RGB average value of each LCC value.  
 

 

 
 

Figure 3. Process in creating datasets 

 

 

The datasets in Table 1 show a significant difference in RGB value for each LCC value and the effects 
of the light intensity. Higher light intensity value results in higher RGB values and thus the datasets are 

qualified to be used as training data for machine-learning algorithm. Furthermore, these 120 datasets are 
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separated into 84 datasets for training and 36 datasets for testing. The number of datasets collected in this work 

is enough to build a classifier. This is supported by the research [19] that used 75 training data and 25 testing 

data to classify a tomato maturity, in [20] used 115 images of rice leaf (70% for training and 30% for testing) 

to classify four rice diseases.  

 

 

Table 1. Datasets of the classifier 
Light intensity (lux) Average value of LCC value 

Red Green Blue 

2000 146 175 74 2 

2000 117 152 76 3 

2000 89 120 77 4 

2000 88 105 79 5 

2800 155 186 83 2 

2800 129 165 84 3 

2800 101 134 87 4 

2800 99 119 90 5 

3500 166 194 92 2 

3500 141 173 94 3 

3500 111 145 95 4 

3500 110 127 97 5 

 

 

2.3.   Building the android application 

An android application is built to capture and prevent users from taking an image if the light intensity 

is not in the range of 2000-3500 lux. The images should be taken in a shading lighting condition. Figure 4 

shows the android application process in a flowchart. The process begins with smartphone camera and light 

meter initialization. The process will continue if user touches an image in this android application and then the 

application analyzes the light intensity. The measured light intensity value is shown on the top of the screen, 

along with a camera preview image. A warning message will show up if a user tries to capture the image in the 

light intensity that is not in the range. The application screenshots are shown in Figure 5. 

 
 

 
 

Figure 4. Flowchart of the image acquisition system 
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Figure 5. Screenshots of the android application 

 

 

2.4.   Building the classifier 

The processing steps to determine the leaf LCC value in the computer are shown in Figure 6, which 

begins with the light intensity and the image file reading. Several preprocessing steps are needed before doing 

the classification using k-NN. First, the image is cropped into 1000x1000 pixels from the original smartphone 

image, then split into 100 pieces of images of 100x100 pixels. The RGB values of these split images are read 

and calculated, combined with the light intensity, both sets of values become the input. The k-NN classifier 
determines the leaf LCC value as output and attaches it to each piece of images. The last process is gathering 

all these images, calculating the average LCC value, and showing it to the user, as seen in Figure 1.  

As the created datasets have RGB and light intensity values as inputs and LCC value as a target, in 

[21] suggests the application of supervised machine-learning algorithm to classify the leaf images’ LCC value. 

Sometimes the literature on machine-learning classification implementation has conflict issues with each other 

on choosing an algorithm. In [22] introduced artificial neural networks (ANN), support vector machines 

(SVM), k-nearest neighbor (k-NN), single decision trees, boosted decision trees, and random forests as six 

relatively mature machine-learning algorithms. In [23-24] introduced classifiers that generally use in 

agriculture are SVM, k-NN, backpropagation neural network, and decision tree, which helps to narrow the 

option of choosing a suitable algorithm. Comparing k-NN and SVM use in detecting rice diseases, in [25] 

concluded that k-NN has better accuracy. Thus, k-NN is applied in this research because of its simplicity, 
effectiveness, nonparametric, and its wide range of usage in image and spatial classification [26].  

The k-NN classifier is built using python programming language and scikit learn library. The k-NN 

works by calculating the distance of k nearest points to the training data. The hardest part of k-NN algorithm 

implementation is choosing the appropriate k value. In [26] recommended an experienced rule to determine k 

which is smaller or equal to the square root of the number of training data. Almost the same suggestion comes 

from paper [27] to select a small and odd k value, so this experiment chooses and compares k=5, 7, and 9. The 

final k value is obtained using a cross-validation confusion matrix discussed in [28], and the best accuracy 

within these three k values will be used in this research. The confusion matrix of each k value created by the 

testing data is shown in Figure 7. The accuracy, precision, and recall of each k value are obtained with the 

equation from [28] and the confusion matrix, is shown in Table 2. The best k value is 5, which succeeds in 

predicting 35 data correctly with only 1 failure. The accuracy of k-NN classifier with k=5 is 97.22%.  

 
 

Table 2. Accuracy, precision, and recall of k=5, 7, and 9 
k Accuracy  

(%) 

 Precision value of the LCC value of (%) Recall value of the LCC value of (%) 

2  3 4 5 2 3 4 5 

5 97.22 100 90 100 100 88.89 100 100 100 

7 83.33 81.82 85.71 72.73 100 100 66.67 88.89 77.78 

9 69.44 72.72 66.67 62.50 88.89 88.89 44.44 71.42 88.89 
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Figure 6. The process to determine the LCC value 

 

 

 
 

Figure 7. Confusion matrix of k=5, 7, and 9, there are missing numbers in the confusion matrix 

 

 

3. RESULTS AND ANALYSIS 

The in-site test was done by using several combinations of 20 rice leaves that stuck on a cardboard 
and the images are taken under the light intensity of 2000-3500 lux. The classified result is shown in Table 3. 

The average accuracy of the classification system is 96.40%. The image with a uniform leaves gives higher 

accuracy than the mixed one. Figure 8 shows several classified leaves images. Compare with the work in [17], 

which both of the works concern in the light intensity but using a different algorithm. This work has contributed 

to achieving higher accuracy with no additional module/cost.  

 

 

Table 3. Classification test 
Leaves sample combination Light 

intensity  

Average 

LCC 

LCC value 

classification 

Accuracy 

(%) 

12 leaves of LCC value 2, 8 leaves of LCC value 3 2338 lux 2.4 2.31 96.25 

5 leaves of LCC value 3, 15 leaves of LCC value 4 2864 lux 3.75 3.46 92.27 

2 leaves of LCC value 3, 9 leaves of LCC value 4, 9 leaves of LCC value 5 3256 lux 4.35 4.67 92.64 

20 leaves of LCC value 4 2023 lux 4 4.05 98.75 

20 leaves of LCC value 4 2768 lux 4 4.03 99.25 

20 leaves of LCC value 4 3567 lux 4 4.03 99.25 
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                        Classified LCC value 2.31 Classified LCC value 3.46     Classified LCC value 4.67 

 

Figure 8. Classified leaves images 
 

 

4. CONCLUSION 

The research work was done successfully in classifying the rice plant N nutrient based on LCC. The 

high accuracy of prediction is achieved by including light intensity value in the datasets and have consistent 

lighting between 2000-3500 lux. The system can be improved by eliminating onsite work to pick and stick the 

leaves on cardboard and has a wider range of lighting intensity. 
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