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Abstract 
This paper modified the differential evolution (DE) algorithm adaptively to solve the power unit 

coordinated control (PUCC) problem. It was modified in two aspects: 1) a uniform initialization with a 
controlling zone factor (m), 2) a regular mutation process, to develop an effective searching mechanism 
and improve the performance of the basic DE algorithm. A numerical case study was employed to verify 
the performance of our proposed uniform differential evolution (UDE) algorithm, by contrast to the basic 
DE, genetic algorithm (GA), and particle swarm optimization (PSO) algorithm. The experimental simulation 
results show that our proposed UDE algorithm has outperformed the other comparative algorithms, which 
demonstrate the effectiveness and efficiency of the new algorithm. 
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1. Introduction 

The PUCC problem is an interesting task for many researchers during these decades. 
The power unit is composed of a boiler-turbine system coupled to an electric power generator. 
The boiler-turbine configuration is a multivariable, nonlinear, and time varying-system with 
complex operation due to the uncertainities and high settling time. So, the main goal of the 
boiler-turbine control is to justify the generator output power to maintain a high response to the 
load fluctuation, while keeping the steam pressure and temperature within the permissible 
values. For simplification, the power unit might be considered as three-input three-output 
system, in which the essential inputs are the boiler firing rate, position of the steam valve, and 
the feeding water, while the outputs are the electric power, steam pressure, and water level 
deviation. Controlling of this system can be based on the stored thermal energy in the boiler or 
on the boiler-turbine governor as two alternative conventional techniques. As the first technique 
is slow with high stability, the latter is fast to follow the load variations but might be unstable. 
The coordinated control is an integration of the two conventional techniques to result in a stable 
control system with high level of response. Then the power unit is to be optimized under 
considerations of minimizing the load tracking error, injecting fuel, steam losses, and feeding 
water. There are different published works in the literature, through which the PUCC problem is 
solved according to the mentioned considerations. In [1], it was solved traditionally to prevent 
cyclic damage to the plant by designing prototype load controllers to adjust the flow of air and 
fuel to the boiler and flow of steam to the turbine. In [2], the solution was based on coordinated 
control with pressure set point scheduling by finding a single solution with the preferences of the 
problem. In [3-5], it was solved by modern heuristic algorithms such as GA, DE, PSO, and 
Pareto multi-objective optimization (PMOO) techniques, depending on a reference governor and 
optimization unit. In [6, 7], a multi-agent system was presented to solve this problem, through 
which a computer software programs work independently in a number of stages to establish the 
required coordinated control. In [8], a nonlinear multivariable power plant coordinated control by 
constrained predictive scheme was created to maintain the thermal constrained during load 
fluctuations. In [9], a new control strategy was used to control the power plant by Smith`s 
predictor to overcome the time-lag influences. 

The DE algorithm was proposed in 1996 by Storn and Price [10] as a new evolutionary 
algorithm, which has a simple structure and efficient solutions. Thus, its applications are 



                       e-ISSN: 2087-278X 

TELKOMNIKA Vol. 11, No. 7, July 2013 : 3498 – 3507 

3499

growing rapidly during these decades through a wide range of problems [11] as shown in the 
current literature. Such as [12], in which the DE algorithm was used to solve the problem of the 
optimal power flow taking the Algerian electrical network as case-study. In [13], a new multi-
populated DE algorithm was proposed to solve the real-parameter constrained optimization 
problems. In [14], the DE algorithm was extended to solve the multi-objective optimization 
problems by using Pareto-based approach. Furthermore, the DE algorithm has the ability to be 
combined with other algorithms to strengthen their effectiveness, such as [15], in which it was 
used to combine with a simple algorithm to result in a powerful technique for the measured data 
alignment to the original surface model. As the DE algorithm has a poor rate of convergence 
when dealing with the problem of high objectives [16], it is required to improve its convergence 
to become more robust algorithm. Through this issue, the convergence of DE algorithm is 
improved to result in the proposed UDE algorithm to adaptively solve the PUCC problem. Then 
its performance is compared with the basic DE, GA, and PSO algorithms. 

The GA was proposed by John Holland in 1975 as the first evolutionary algorithm, 
which was created from the regeneration and natural selection [17]. Then, it was developed 
through these years to represent a powerful algorithm. PSO was proposed by Kennedy and 
Eberhart in 1995 [18] as a population-based stochastic search algorithm. It was successfully 
employed to solve a wide range of problems during the recent years.       
 
 
2. The Improved Differential Evolution Algorithm 
2.1. The Basic Differential Evolution Algorithm  

It depends on the weighted differences between random individuals, so it is more 
generic than other evolutionary algorithms (EAs). The process of this algorithm is based on 
selection, encoding, mutation, and crossover as other EAs, with addition to the ability of using 
floating-point representation. The DE algorithm is initialized according to Equation (1) to find the 

initial population ( ). Then a trail of individuals can be generated by mutating the current 

vector ( ), according to the three schemes of mutation as in Equations (2) to (4). The DE 
algorithm depends on mutation as essential operator to reproduce the new vectors rather than 
crossover operator in searching process. In fact, mutation process is used in the DE algorithm 
to find the diversity through the individual of each population, based on the mutation 

factor , which is used to amplify the vector differences. On the other hand, the crossover 
probability is used to determine the recombined vector according to Equation (5) with the 

crossover factor . It is required to reduce the computational time cost by usage of small 
population size. Therefore, the population size is to be tuned carefully to avoid the slow finishing 
or premature convergence in case of using small, or high population size respectively. The 

preferable population size through the literature is  (  is the number of parameters). 
Selection is an important operator in DE procedure, by which the candidate individuals are to be 
determined for the next stage, according to evaluation process, which is based on tournament 
or other stochastic techniques. This procedure is repeated until the stopping criterion is 
satisfied.  
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Where  is the initial population;  and  are lower and higher boundaries of 

the power-pressure window;  is a random number between  and ;  are the 
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generated individuals;  are the current individuals,  and  are two random individuals; 

 is the best individual in each population;  is the population size; and  is the 
number of parameters. 
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Where  is a random number between  and  is a random integer from 

1 to . 
 
2.2. The Proposed Algorithm 

In this paper, the DE algorithm is modified to adaptively solve the PUCC problem. The 
proposed UDE algorithm is initialized uniformly rather than the random initialization of the basic 
DE algorithm. In which the initial population is controlled and distributed uniformly by a constant 

deviation  in the search space. Depending on the value of the zone factor ( ), the initial 

searching process is conducted optionally, according to the problem experience. If  is the 
number of the initial population in the solution space of the PUCC problem, then the constant 
deviation between the initial points will be: 
 

( ) / ( ),

           0 .

H Ld u u m N

m

 



 (6) 

 

The searching zone is varying according to the value of ( ). If  the searching 

zone will take a limited part of the solution space, if  the searching zone will be the 

complete space, and if  the zone will extend to include the margins of the space. In this 
case, the preferable value for  is 1. Then Equation (1) is to be modified to Equation (7) to 
give the new initialization of UDE algorithm. In addition, the three mutating Equations (2) to (4) 
are modified to Equations (8) to (10). 
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3. The Case Study 
3.1. System Model 

In this paper, the PUCC problem is solved through, a typical case study of 160 MW oil-
fired drum-type boiler-turbine generating unit. Which is based on the third-order model of Bell- 
Astrom [19], as shown in Equations (11) to (13): 
 

9 /8
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3 2/  (  141 - (1.1 - 0.19) ) / 85.fd dt u u P   (13) 

 

Where  is the drum steam pressure,  is the fluid density, 
and , ,  are the valve positions of the fuel, flowing steam, and feeding water 
respectively. The water deviation is to be calculated as shown below: 
 

2 1 3 (0.85 0.14) 45.59 2.51 2.09. eq u P u u      (14) 

 
(1 / 0.0015) / (1 / (0.8 25.6) 0.0015).s f P      (15) 

 
50(0.13 60 0.11 - 65.5). f s eL q     (16) 

 

Where is the steam quality,  is the evaporation rate in ( ), and  is the drum 

water level output. Noting that, the positions of the valve actuators are constrained to , and 

their rates of change  are limited to: 
 

10 .0 0 7 / 0 .0 0 7 . d u d t    (17) 

 

22.0 / 0.02. du dt    (18) 

 

30.05 / 0.05.  du dt    (19) 

 
3.2. Optimization Equation

 
For the case study, there will be four objective functions to be minimized: load tracking 

error, and the valve positions of the fuel, steam, and feeding water. Figure 1(a) shows the 
power-pressure window that gives the upper and lower boundaries of the pressure for each 
value of the generated power. Figure 1(b) shows the process of the three actuators during the 
load variations. These characteristics are known as the power-input windows, which are 
obtained from the power-pressure window according to Equations (20) to (22). 
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These equations are deduced by solving the model of Bell-Astrom when the system is 

at its steady state. The multi-objective PUCC problem can be described in Equation (23), as a 
typical minimization function, which is composed of four weighted terms of the optimized 
objectives. The weights are chosen according to the size of the solution spaces for the objective 
functions. As it is seen in Figure 1 (b),  has the largest solution space so it can be weighted 
by 1,  is weighted by 0.5 regards to its solution space, which is relatively smaller than the 
solution space of . The solution space of  is so small, thus  is weighted by 0. The error 
of the generated power is weighted by 1 due to its wide range of optimization.  
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For a set point (SP) ,  is the load demand,  is the actual generated power.  
represents he valve position of the fuel injection,  represents the valve position of the steam 
flow (it is predicted by a negative sign to convert the maximization into minimization process), 

 represents the valve position of feeding water.  and  are the lower and higher 
boundaries of the solution space. 
 
 
3.3. Problem Description 

Figure 2 shows a summarized structure for the coordinated control scheme as in [8], 
which is required to create the optimal operating map for the power unit according to the load 
demand. By aid of the power-pressure and power-input windows the power-pressure mapping 
and the input signals can be derived. Consequently, a vector of optimal control signals ( ) is 
generated to determine a pressure set-point ( ) according to the steady-state model ( ) of 
the power unit as in Equation (24). Then a successful searching mechanism for the mentioned 
optimal input vector is developed to solve this multi-objective problem. 
 

*( )
d SS

uMP  (24) 

 
 

           
 

Figure 1. (a) The power-pressure window, (b) The power-input windows 
 
 

     
 

Figure 2. Coordinated control structure 
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3.3 Algorithms Application 
DE and UDE algorithms are employed to explore for the optimum set of input vector 

 to satisfy the optimization process according to the flowchart in Figure 3, 
with the following steps: 
Step 1: initialize the first population according to Equations (1) and (7). 
Step 2: evaluate each individual by a fitness value. 
Step 3: explore a new population (recombination) by mutation operator according to Equations 
(2) to (4) and (8) to (10), taking into account the crossover probability according to Equation (5), 
Step 4: evaluate the new population and give a fitness for each individual. 
Step 5: select the best individual according to the best fitness relative to other individuals. 
Step 6: update the best individual from the current population. 
Step 7: If the criterion is satisfied, terminate the algorithm and output the final solution, 
otherwise go to step 3.   
 
 
4. Research Method 

Four simulation experiments were developed by aid of software programs using 
MATLAB (version 7.10.0), to conduct DE and UDE algorithms to solve the PUCC problem. 
Thirty independent pilot runs were use in each experiment. It is necessary to determine the 
optimal parameter setting for the basic DE and the proposed UDE algorithms empirically. Figure 
4 gives the fitness variations against the mutation factor. According to this investigation, the 

optimal mutation factor is chosen (  for the two algorithms).  
 
4.1. First Experiment 

The first experiment was developed to show the improvement of the modified UDE 
relative to the basic DE algorithm in solving the PUCC problem. Table 1 shows the optimal 
parameter-setting of the algorithms. Then, the results of this experiment are shown in Table 2. 
 
 

 
 

Figure 3. The flowchart of DE and UDE algorithms 
 
 
4.2. Second Experiment 

It is necessary to evaluate the performance of the proposed UDE algorithm with respect 
to other heuristic algorithms. Thus, a second experiment was made to compare UDE algorithm 
with GA, DE and PSO algorithms. Table 3 shows the optimal parameter setting, while Table 4 
shows the experiment results. 
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Figure 4. The parameter setting investigation, the left graph is for DE and the right graph is for 
UDE  

 
 

Table 1. The parameter setting of DE and UDE 
Algorithm Mutation factor(F) Crossover factor(f) Max. Gen. Pop. Size 

DE 0.8 0.5 500 60 
UDE 0.8 0.5 200 20 

 
 

Table 2. Simulation results of comparing the three schemes of DE and UDE  
Algorithm Theoretical Average Best Worst Std 

DE1 0 5.88E-03 1.97E-04 0.0301 0.00653 
UDE1 0 2.61E-03 1.84E-04 0.0078 0.002425 
Improvement (%) - 55.61% 6.60% 74.09% 62.86% 
DE2 0 1.52E-03 8.30E-07 0.0114 0.00262379 
UDE2 0 5.43E-08 1.15E-09 2.10E-07 5.01E-08 
Improvement (%) - 99.98% 99.86% 99.97% 100% 
DE3 0 1.77E-03 3.12E-05 0.0083 0.00195 
UDE3 0 3.57E-08 2.17E-010 1.53E-07 3.62E-08 
Improvement (%) - 100% 100% 100% 100% 

 
 
 
4.3. Third Experiment 

As UDE and PSO algorithms have comparable results, more investigations are required 
to develop a comparison between them. A third experiment was made by tuning the maximum 
generation and population size using the parameter setting in Table 3. The results of this 
experiment are shown in Figure (5).   
 
4.4. Fourth Experiment 

Through this experiment the optimization Equation (23) is conducted to show the effect 
of the comparative algorithms on the minimization process, through the PUCC problem using 
the same parameter-setting in Table 3. Table 5 presents the results of the minimization process.  
 
 

Table 3. The parameter setting of the comparative algorithms 
Algorithm  Mutation 

factor (F) 
Crossover 
factor (f) 

Learning 
factor ( c1)

Learning 
factor (c2) 

Weight 
(w) 

Max. Gen. Pop. Size 

GA 0.1 0.9 - - - 500 100 
DE 0.8 0.5 - - - 500 60 

PSO - - 2.1 2.0 0.8 500 40 
UDE 0.8 0.5 - - - 200 20 
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Table 4. Simulation results of the comparative algorithms 
Algorithm Theoretical Average Best Worst Std 

GA 0 0.057391 4.86E-04 0.20950 0.16318 
DE 0 1.77E-03 3.12E-05 0.0083 0.00195 

PSO 0 2.61E-07 8.53E-13 6.15E-06 1.10E-06 
UDE 0 3.57E-08 2.17E-10 1.53E-07 3.61951E-08 

 
 

Table 5. Optimization results 
Algorithm Average  

of u1 
Average 

 of u2

Average 
 of u3

Average  
of error 

Optimization 
 results 

GA 0.6946207 0.89316 0.65276 0.01847 1.25894035 
DE 0.73107096 0.883819 0.614268 0.0025 1.251854 

PSO 0.556226 0.899677 0.71456516 6.87E-07 1.177790687 
UDE 0.5566 0.8459 0.6771 3.80E-08 1.124200038 

 
 

 
Figure 5. The Average error versus max gen & pop size for PSO & UDE algorithms  

 
 
4.5. Comparing the Proposed Algorithm with a similar work in the literature 

In [4], DE algorithm was improved by developing a new fast differential evolution (FDE) 
algorithm to solve the PUCC problem. The FDE algorithm has a dynamic mutation factor 
instead of the fixed one of the basic DE algorithm. A comparison through this work and our 
proposed UDE algorithm is developed to evaluate the effects on the basic DE algorithm. Table 6 
shows the percentage improvement of FDE and UDE on the basic DE algorithm among the 
three mentioned schemes of DE algorithm. Through which our proposed algorithm has better 
improvement than FDE algorithm. 

 
 

Table 6. The percentage improvement of FDE & UDE on DE algorithm 
Algorithm Percentage improvement 

FDE1 3.96% 
UDE1 55.61% 
FDE2 2.10% 
UDE2 99.98% 
FDE3 2.80% 
UDE3 100% 
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4.6. Results Analyses 
As shown in Table 2, UDE algorithm has improved the performance of DE algorithm 

due to its effective search mechanism. Table 4 proves that UDE algorithm can highly outperform 
GA and DE algorithm. When comparing the performance of UDE and PSO algorithms, the first 
has been slightly better than the latter. Noting that, UDE algorithm can give the best results at a 
small maximum generation number of individuals (about 40% of the maximum generation size 
that is used by PSO algorithm). 

The UDE algorithm is easier in application than GA and PSO algorithm with regard to its 
simple structure. Figure 5 demonstrates the effect of tuning the maximum generation and 
population size on the average error for UDE and PSO algorithm. It is clear that the average 
error decreases as the maximum generation increases for the two algorithms. UDE algorithm 
can give the best results early, rather than PSO algorithm. 

Table 5 shows the typical results of the minimization process when conducting  
equation (23). The first four columns of this table are the average values of the four objective 
functions that are to be minimized. In which UDE algorithm has better performance than GA and 
DE algorithm, and has comparable results with PSO algorithm. The fifth column gives the 
summation of the four objective values according to the weighted optimization equation, in 
which UDE has the best value overall the comparative algorithms. Table 6 proves that UDE has 
higher percentage improvement on the basic DE than FDE algorithm through the three 
schemes. 
 
 
5. Conclusion 

According to the results shown above we conclude that the arrangement of UDE 
algorithm can improve the performance of the basic DE algorithm.  Nevertheless, slight 
alteration on the basic DE is required, so UDE algorithm is still simple and easy to be applied for 
solving multi-objective PUCC problem. Empirically, UDE algorithm can give better results than 
that of GA, and DE algorithms. On the other hand, UDE and PSO algorithms have quite 
comparable results as the first has slight best results than the latter. Noting that, UDE has the 
advantage of using small maximum generation of individuals over other comparative algorithms 
that reduces its computation cost. Furthermore, our proposed algorithm has better improvement 
on the basic DE algorithm than another similar work in the literature  
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