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 Image deburring technique refers to restoring an image from the degraded 

version named blurred. Blurring can be caused due to various phenomena 
such as optical system, motion blur and other phenomena. Moreover, to 
deblur the image it is essential to know the blurring process characteristics 
and it is one of the difficult task. In past several deblurring algorithm have 
been proposed to approximate the kernel blur, however they lack the 
efficiency and expensive to be applied for the real world scenario. In this 
paper, we have proposed a CCM (constraint conditional model) to deblur the 
image; it learns the direct mapping from the degraded to the absolute clean 
image. Moreover, the main aim of CCM is to restore the image in its original 

form, the best advantage of CCM is that it provides handsome tradeoff 
between the image quality and efficiency. Moreover, CCM is evaluated on 
the three different standard datasets by considering the different performance 
metrics and through the comparison analysis observation has made that CCM 
approach outperforms the other techniques.  
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1. INTRODUCTION  

In past few decades, imaging science has seen a whole lot of revolution such as microscopy, medical 

imaging, astronomical imaging, consumer photography, moreover to support the application plenty of 

research has been carried out. These researches enable the image acquisition in higher speed, however, faster 

image aquisition methods leads to the degradation in image quality, and blur is one of the best examples. In 

general, blur is occurred due to the various scenarios such as if fast moving vehicle captured through the 

surveillance system leads to the blurrness in the image or video and this leads to difficulty in identifying the 

license plates. Other scenarios occur such as it is very difficult to stabilize the camera for the longer periods, 
mainly in the low lighting conditions; since it needs, the long exposure time which results in blurred images 

[1]. Moreover, also it is observed that the imaging system designed have single focus and other remains blur, 

other scenario such as long distance capturing or sometimes lens fails to focus on the entire available color on 

the given convergence point, this might result in the blurred image. Based on the above-discussed scenario 

the blur can be described as different types [2].  

https://creativecommons.org/licenses/by-sa/4.0/
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a) Object motion blur: This type of motion blur is caused due to the relative motion between the camera 

system and the object in scene at the given exposure time and it occurs during the exposure time [3].  

b) Camera Shake Blur: This type of blur is induced through the camera motion at the exposure period and 

this is common in the dim light and mostly exist in handheld photography. This type of blur can be 

complex since the hand might move in the unexpected direction and might cause the rotation of camera 

out of plane or in plane [4].  

c) Intrinsic Physical Blur: This type of blur exists due to the several reasons such as anti-aliasing filters, 

sensor resolution, lens aberration and light diffraction. For example, in an optical system, light rays’ 
travels from one point converge at the same point on the focal plane and results in the sharp image, 

whereas in the real it is highly improbable that light rays travel parallel on the given optical axis.  

d) Defocus Blur: Moreover, this is the most common types of blur and it is observed in the everyday photos 

we take such as selfies, for instance to capture the image for a novice photographer it is very difficult to 

focus the particular object. Similarly, when the camera has single lens then scene outside the field is on 

the blurry side.  

Moreover, the above discussion shows the problem facing in capturing the images and since recent 

years hve seen the popularity of capturing the images and videos through the mobile and hand held cameras 

and most likely the blurry images are produced due to the several reasons discussed earlier in this section. 

Furthermore, the blur in any given image can restrict the human to resolve the scene detail; hence discarding 

the artifacts becomes the very critical process. Moreover, to get rid of such issue, deblurring was introduced 

which tries to restore the image, as in its original form, in past several researches have been taken for 
deblurring. Based on this research the deblurring process is classified as the non-blind deblurring and blind 

deblurring. Moreover, when the motion trajectories of camera are known then the estimating the image is 

known as the non-blind deblurring, when the information is missing then it is called blind deblurring. 

Generally, blind deblurring is difficult, as it requires the good amount of knowledge of blur and the desired 

image. Moreover, to gather good knowledge of blur kernel and the image still several researches is required, 

in past several researchers have proposed to deblur the image by retrieving the prior knowledge, some of 

them have been discussed in the next section i.e. literature survey, however these methods are either non-

linear or nonconvex.  

Hence, in this paper we have proposed the novel methodology, which helps in deblurring the 

images, here we used 8 blur kernel and proposed the CCM (constraint conditional model) along with 

convergence operator that helps in restoring the images. We use CNN based filter for achieving the desired 
image, Moreover the contribution of this particular research work has been highlighted through the below 

points. 

a) We propose constraint conditional model along with the convergence operator to restore the image. 

b) CCM (constraint conditional model) achieves the marginally computational efficiency when compared to 

the other method. 

c) CCM possesses various characteristics such as robust in nature, flexible and easy to adopt.  

d) CCM is compared to the various state-of-art techniques in terms of two performance metrics named as 

PSNR and SSIM, CCM performs marginally better than the other does.  

This research work has organized and parted into four distinctive section, first section describes the 

background of blurring and the importance of deblurring, objectives and the contribution of research work. 

Second section discuss the various techniques which have proposed in past along with their advantages and 
disadvantages. Third section represents constraint conditional model along with mathematical equation, 

algorithm and the formulation. Fourth section presents the Evaluation of CCM by considering the various 

dataset and various scenarios.  

 

 

2. LITERATURE SURVEY 

Nowadays, numerous works have shown the significance of edge data in the blur kernel estimation, 

for instance, to identify the edges orientation as well as the location. Moreover, a Gaussian edge detector is a 

sub-pixel difference utilized in as edges are assumed to be detectable regardless of whether the quality is not 

that much good [5]. The bilateral filter is included in explicit edge prediction, which is utilized in [6], and in 

order to create edges of the salient image the shock filter is utilized, however, these techniques act efficiently 

for little blur degradation and that technique are not efficient for the kernels, which are of large-scale. To 
upgrade the searching for an edge, applied the minimization of the approximate L0 gradient [7]. Motivated 

by this work, the numerous current methodologies utilized the L0 norm1 to apply the sparsity on the gradient 

of the image and furthermore thought to be various types of specific feature highlights for the latent image of 

intermediate. Further inclusive an extra L0 constraint of sparsity on image intensity itself for deblurring 

content in an image [8]. For a few images, an observation that genes that the clean image is sparser as 
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compared to the dark channel of the images which are not clear (blurred). At that point, the sparsity is forced 

on the channel which is dark to additionally improvise the estimation blur of the kernel. The prior of the dark 

channel is less likely to assist the kernel’s estimation if it dominates of pixels that are bright from the image 

input [9]. Previous work is based on the specific method between clean one and blurred image, and priors of 

pre-set as for the blur estimation are proposed. Similarly, the content of the state-of-the-art strategy of 

deblurring has improved performance on the content in the image while behaving not so well on the blurred 

of genuinely apprehend in the against, while an inert image inappropriate channels have the fracture of 

statistical [8]. Meanwhile, the likely techniques may have exceptionally promising outcomes which can be a 

watch. However, they fail in the content image [9, 10]. Gaussian factors utilized a zero-mean mixture to 

approximate gradients of the natural image distribution or heavy-tailed [11]. Nevertheless, considering the 
adjacent pixel's statistical data during the estimation of the kernel may generate ringing artifacts in the 

reestablished image. This model of probability that is unified and is fitted for the distribution of image 

gradient as well as in which priors of spare depends on the basic of MAP architecture lean toward image 

which is not cleared over a clear image [12]. To face this problem together with an issue, proposed a 

powerful effective standardized sparsity prior (so-called (l1/l2) regularization) for stabilizing the process of 

the kernel. Straightforwardly utilized l0 regularization to oblige the estimation of the kernel, which ensures 

the accuracy as well as increase the evaluation capacity. In further research, used l0-l2 joint regularizations in 

kernel’s evaluation together with the restoration of the latent image to improve the robustness of the 

algorithm [13]. Because single images of sparsely represented can introduce constraints on information 

fidelity terms, utilized over-complete coefficients of sparse to encode a block of image and consequently tries 

these coefficients to the deblurring method. Joined the images that are sparse natural prior along with the 
increase and better group of over-complete of a dictionary, thereby systematically structure of excluding 

detrimental [14]. Utilized the l1 standard to show the frame lets sparsity in a multi-scale methodology that 

returns from course to fine goals [15]. 

Applied a low-position paradigm together with the weighted atomic standard minimization used to 

fit for the matrix of low-position [16]. This strategy removes details of edges that are too small and fine 

texture when keeping up the structures of blurred images dominant, making it reasonable and suitable for 

pictures with rich subtleties. Presented a viable and effective technique that utilizations data from the channel 

which are dark, but priors fail depends on a dark channel to keep as for images in which bright pixels and 

better play the main job [17]. To address this insufficiency, joined bright as well as dark channel priors, 

presenting the 'higher channel prior'. Numerous deblurring strategies that do not depend on exist of image 

priors. These methods based on the locally constructed salience and match features but do not achieve correct 

results when source images consist of considerable noise [18, 19]. However, efficiency properties and 
convergence of the referenced algorithm have not been very much adjusted balanced. Besides, a few 

specialists have considered remarkable edge extraction and determination to propose various viable strategies 

of deblurring. Most of the strategies of de-blurring focus on center around situations, for example, low 

enlightenment, content, and faces. These areas of domain-specific techniques require complex activities for 

the operation. 

 

 

3. PROPOSED METHODOLOGY 

In past several methodologies have been proposed for the de-blurring process discussed in previous 

section, however these methods have failed miserably. Moreover, some of the method does achieve in de-

blurring but they fail in learning the parameter and bad trade off. Hence, to get rid of such scenario, we have 
proposed Constraint conditional model that can help in achieving a de-blurred image. The main advantage 

over the existing model is that it learns all the parameters and achieves the better trade off in time, efficiency 

and quality. CCM model is described below. 

 

3.1.  Preliminarie 

Let us consider any two vectors 𝐼1 and 𝐼2 and both vectors may represent image observed and the 

expected image along with the 𝑓𝑢𝑛𝑐 as the sensing operator. Furthermore, the image formation can be given 

through the (1): 

 

𝐼1 =  𝑓𝑢𝑛𝑐 (𝐼2) (1) 

 

𝑓𝑢𝑛𝑐 (𝐼2) =  𝒪 ⨂𝐼2 + 𝒫 (2) 

 

Where 𝒪 is the blur kernel and ⨂ indicates 2D convolution between the expected image and blur 

kernel. Moreover, the operator is linear so it can be written as: 
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𝐼1 = M𝐼2 + 𝒫 (3) 

 

M Is the deconvolution with𝒪. 

 

3.2.  Image learning framework  

Moreover, in this subsection, we propose a framework for learning for the whole image through the 

convolutional Neural Network based on neighborhood model; this neighborhood model connects the node 
given in the square region. In order to construct the framework, we define the potential function: 

 

𝑓(𝕀(𝑘) = 𝑓𝔽(𝕀(𝕔); Θ) =  ∏ 𝜔(𝕂𝕟
𝔼  𝕀(𝕔); 𝛒𝕟)ℝ

𝕟=1   (4) 

 

In the above equation, 𝕂𝕟
 indicates the linear filter, 𝛒𝕟 is parameters, Θ is set of all parameters, ℝ is 

number of experts and chosen based on the model quality. Hence overall framework is given through the (5): 

 

ℚ𝔽 (𝕀 ;  𝛩) = 𝑍(𝛩)−1  ∑ ∑ Ω(𝕂𝕟
𝔼𝕀(𝕔); 𝛒𝕟)ℝ

𝕟=1
ℂ
ℂ=1  (5) 

 

𝕂𝕟
𝔼 is linear filter which indicates the vector space of given pixel value, further we normalize the 

equation. To achieve that we take log of the model defined through 𝜓 and rewrite the (6) as: 

 

ℚ𝔽(𝕀 ;  𝛩)=𝔻(𝛩)−1  exp{−𝕋𝔽 (𝕀 ;  𝛩)} =  𝔻(𝛩)−1 exp{∑ ∑ 𝜓(𝕂𝕟
𝔼𝕀(𝕔); 𝛒𝕟)ℝ

𝕟=1
𝕔
𝕔=1 } , (6) 

 

3.3.  Improvised image learning framework  

Moreover, in order to develop the specific framework, selection of function is crucial and denoted 

as Ω(𝕃; ρ𝕟), here 𝕃 indicates the filter response. The (7) presents the framework from the above scenario: 

 

Ω𝕁(𝕃; 𝛒 , 𝜏) =  𝑒−𝛒√𝜏+𝕃2
 (7) 

 

Since Ω can be scaled through filter norms, hence we set 𝜏=one, furthermore we log the framework 

function and de function derivative with respect to 𝕃 and ρ . 

 

3.4.  Objective function 

The above section frames the Image Learning Framework, this captures the absolute natural scene 

and this framework allows the generic prior model for the low-level vision. Furthermore, the overall 

framework with the objective function is represented in the (8): 

 

0.5Γ ‖𝐼1 − 𝑀𝐼2‖2
2 + ∑ 𝜔𝑛(𝐵𝑛  𝐼2)𝑅

𝑛=1  (8) 
 

In the objective equation, 𝐼1 and 𝐼2 is the observed image and desired image respectively, 

convolution operator is denoted by 𝑀, 𝐵𝑛 is 2D conv and 𝑏𝑛 is filter. Since above problem is constrained 

problem and it is optimized through the penalty function and it is indicated as 𝜔𝑛 . In order to balance the data 

fidelity and regularization, positive scalar is used and denoted as 𝜆, the positive scalar depends on parameter 

and task assigned. Considering the above problem several researcher have tried to deblur image, moreover 
they trained for model mapping, few researcher have tried to achieve the tradeoff between the image quality 

and time, the main issue with these method is that it needed the individual training for the subtask in 

deblurring and furthermore trade off needs to be achieved hence by considering these issue we design 

constraint conditional model for achieving the high tradeoff. 

 

3.5.  Optimization with penalty function 

In (8) presents the objective function and as it is constrained problem it needs to be optimized; 

hence we use the penalty function to optimize the function. Due to the non-convexity of the function, the 

function has to be optimized and can be optimized through the below process. Let us consider any random 

process (𝕄,ℕ) under 𝜋 (𝕞, 𝕟, 𝕃 ) and the temperature 𝑡𝑒𝑚𝑝 is defined through the (9): 

 

Ω𝑡𝑒𝑚𝑝(𝕞, 𝕟, 𝕃 ) =  
exp (−Ω∗(𝕞,𝕟;𝕃 )/𝑡𝑒𝑚𝑝 )

∬ exp (−Ω∗(𝕞,𝕟;𝕃 )/𝑡𝑒𝑚𝑝)𝑑𝕄𝑑ℕ)
 (9) 

 

Here CD (Conditional Distribution) of 𝕄 while ℕ = 𝕟 can be given as: 
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𝜋𝑡𝑒𝑚𝑝(𝕄|𝕟) = 𝜋𝑡𝑒𝑚𝑝(𝕄, 𝕟)(𝜋𝑡𝑒𝑚𝑝(𝕄, 𝕟)𝑑𝕄)
−1

 (10) 

 

Later Markov Chain is constructed and can be formulated as {(𝕄(ℂ), ℕ(ℂ)), 𝕔 = 0,1,2 … . } is 

constructed through the below process: 

Step 1: let’s select any temperature sequence {𝑡𝑒𝑚𝑝𝕔, 𝕔 = 1, … . }. 

Step 2: Initialize chain with zero as its value. 

Step 3: In case of each 𝕔 =1, 2, generate(𝕄(𝕔), ℕ(𝕔)) from (𝕄(𝕔 − 1), 𝐵(𝕔 − 1)) through transistor 

probability 𝜋𝑡𝑒𝑚𝑝𝕔
((𝕄|𝐵(𝕔 − 1))𝜋𝑡𝑒𝑚𝑝𝕔

(𝕟|𝕄). 

 

3.6.  Dividing problem into sub-problem 
In (8) is considered as the objective function, later through the above equation we optimize, however 

the problem rises in further optimization. Optimization is highly improbable while there is non-linearity in 

penalty function, further optimization can be achieved through by using the convergence operator which is 

discussed later in the same section, COP (convergence operator) helps in dividing the problem into 

distinctive sub-problems. At first, we frame non-linear estimator, this can be derived from the non-convex 

regularization, by considering these scenarios this problem is considered as the approximation problem and 

later we relax the problem using convergence operator function which is formulated in the next section. 

Meanwhile the approximation problem is framed with the new objective and depicted in (11): 

 

0.5Γ ‖𝐼1 − 𝑀𝐼2‖2
2 +  0.5𝜑||𝐶𝑂) − 𝑀||

2

2
∑ 𝜔𝑛

𝑅
𝑛=1  (11) 

 

In the above equation, 𝜑 indicates the positive scalar and 𝑀 indicates the convolution operator; here 

the value of 𝜆 depends on the value of positive scalar and convolution operator. CO is given variable which is 

used for forming the equality; further we optimize (11) through the iterative approach using CO variable and 

includes the desired image 𝐼2; moreover (12) and (13) is formulated through the iterative optimization. 

 

3.7.  Approximation through Convergence operator 

In the above equation, 𝜑𝑒  increase along with each iteration and it results in ideal approximation in 

𝐼2𝑒
; further we employ the partition mechanism and this parts the problem into convergence operator based 

and distributable convergence operator based. Here we use CCM to train the model since the problem can be 

identified as non-deterministic and non convex. Moreover, the CCM (constraint conditional model) is 
developed and formulated in the next section: 

 

𝐶𝑂𝑒 =   ( 𝜑𝑒 1

2
 ||𝐶𝑜 − 𝑀𝑒−1||

2

2
+  ∑ 𝜔𝑛

𝑅
𝑛=1 (𝐵𝑛  𝐶𝑂))𝐶𝑂

𝑎𝑟𝑔𝑚𝑖𝑛
 (12) 

 

𝐼2𝑒
=  (𝜆 ‖𝐼1 − 𝑀𝐼2‖2

2 +  𝜑𝑒‖𝐶𝑂𝑒 − 𝐼2‖2
2)𝐼2

𝑎𝑟𝑔𝑚𝑖𝑛
 (13) 

 

3.8.  Constraint conditional model 

In (13) we observe that the particular equation is dependent convergence operator are very much 

independent from the restoration task; however, fidelity weight 𝜆 and matrix M are problem specific. 

Moreover, CCM approach is easily transferable and can be easily replaced through convergence operator that 

are embedded for optimization. Furthermore (12) constitutes the de-blur on given image; thus, applying CCM 

on (12) we get: 

 

𝐶𝑂𝑒: = 𝐶𝑂𝑃Θ(𝑀𝑒−1, 𝜑𝑒  ) (14) 

 

𝐶𝑂𝑃 is the Convergence operator and Θ indicates the model parameter and it includes the amount of 

filter used in the process. Further we train the model 𝐶𝑂𝑃Θ and Fidelity weight through the given trained 

data. Moreover, (12) and (13) are two sub-problem, and both are trained using the convergence operator.  

 

3.8.1 CCM algorithm 

The above algorithm is designed for constraint conditional model, i.e. the whole process is 

summarized in systematic manner through the above algorithm. Moreover, in CCM the one task is dependent 

on the other task hence the network architecture should maintain the convergence property and to achieve 

that we design the distributable convergence operator in the next section: 

𝑆𝑡𝑒𝑝1: 𝑠𝑡𝑎𝑟𝑡 

𝑆𝑡𝑒𝑝2: 𝐼𝑛𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐼0 = 𝐼1 
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𝑆𝑡𝑒𝑝3: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝜑1 = 1 

𝑆𝑡𝑒𝑝4: 𝐹𝑜𝑟 𝑒 = 1 𝑡𝑜 𝐸 𝑑𝑜 
𝑆𝑡𝑒𝑝5: 𝑈𝑝𝑑𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐶𝑂𝑒  

𝑆𝑡𝑒𝑝6: 𝐶𝑂0
𝑒 = 𝐼𝑒−1 

𝑆𝑡𝑒𝑝7: 𝑓𝑜𝑟 𝑐 = 1 𝑡𝑜 𝐶 𝑑𝑜 

𝑆𝑡𝑒𝑝8: 𝐶𝑂𝑒  
𝑐  

= 𝐶𝑂𝑒 −1 
𝑐 -∑  𝐵𝑛  

𝑐𝑃
𝑅
𝑛=1  𝜓𝑛

𝑐(𝐶𝑂𝑒  
𝑐 

𝐶𝑂𝑒  
𝑐−1) 

𝑆𝑡𝑒𝑝9: 𝐸𝑛𝑑 𝑓𝑜𝑟(𝑠𝑡𝑒𝑝7) 

𝑆𝑡𝑒𝑝10: 𝐶𝑂𝑒  
𝑐  

= 𝐶𝑂𝑒  
𝐶  

 

𝑆𝑡𝑒𝑝11: 𝑢𝑝𝑑𝑎𝑡𝑒 𝐼𝑒  

𝑆𝑡𝑒𝑝12: 𝜑𝑒+1 = 2𝜑𝑒  

 

3.9.  DCOP (distributable convergance operator) 

In here we adopt the non-linear process named as multiple stage diffusion aka MSD for further 

optimization: 

 

𝐶𝑂𝑒  
𝑐 = 𝐶𝑂𝑒 −1 

𝑐 -∑  𝐵𝑛  

𝑐𝑃
𝑅
𝑛=1  𝜓𝑛

𝑐(𝐶𝑂𝑒  
𝑐 

𝐶𝑂𝑒  
𝑐−1) (15) 

 

Such that it should satisfy the below equation i.e. (16): 
 

𝐶𝑂𝑒  
𝑜= 𝑀 (16) 

 

In (15), for initial stage and last stage we use 𝜓𝑛
𝑐 as trainable parameter, 𝐵𝑛  

𝑐 is noted as filter and c 

indicates stage index. Further, the convergence model is simplified using the Multi-Stage Diffusion. 

 

𝐶𝑂𝑒: =𝐶𝑂𝑃Θ(𝑀𝑒−1 ) (17) 

 

3.10.  Training 

In order to train the model, we consider 𝑀 as the 2D convolution matrix, here the blur kernels are 

drawn randomly. Moreover, for the deburring 𝐼𝑒  has the closed form solution: 

 

𝐼𝑒 = 𝐹𝑇−1(𝐹𝑇(𝜆𝑀𝐸𝐼2 + 𝜑𝑒𝐶𝑂𝑒)(𝐹𝑇(𝜆𝑀𝐸𝑀 + 𝜑𝑒))−1) (18) 

 

𝐹−1 In addition, 𝐹  is the inverse fourier transform and fourier transform. Moreover, the loss function 

is the negative PSNR of the de blurred image, the loss function gradient with respect to the parameters is 

given in the 𝜗 =  {Γ𝑇 , Θ}, here T indicates the task. Furthermore, the training scheme has been designed in 
such a way that it should be more effective. Here at first the iteration is set for the single and two parameters 

are trained in 𝐶𝑂𝑃Θ, these two parameters include Θ, Γ. Later the iteration is increased and every time the 

result is refined from the previous step.  

 

 

4. RESULTS AND DISCUSSION 

In this section of research, we evaluate the CCM (constraint conditional model) through comparing 

our model with the other research techniques; moreover, this section is parted into the different sub-section. 

Furthermore, to evaluate the CCM we have considered the ideal computation environment of Intel i5 

processor on windows 10 platform packed with 8 GB RAM and 2 GB NVidia graphics. Moreover, 

MATLAB has been used as the programming language to evaluate the CCM model.  
 

4.1.  Dataset 
In this research work constraint conditional model is evaluated on three standard datasets i.e. Levin 

[20], Kohler [21] and Sun [22], these datasets are considered challenging as well as standard dataset. 

Moreover, Levin is the grey scale dataset and the entire 8-blur kernel image is depicted in the Figure 1. 

Figure 1 consists of eight figures from a) to h) i.e. BK1 to BK8 respectively. Similarly Figure 2 and Figure 3 

presents the results on eight different kernel with different images.  
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Figure 1. Results on eight different blur kernel on Levin (a) Blur Kernel 1, (b) Blur Kernel 2, (c) Blur Kernel 

3, (d) Blur Kernel 4, (e) Blur Kernel 5, (f) Blur Kernel 6, (g) Blur Kernel 7, (h) Blur Kernel 8 [20] 
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(e) (f) (g) (h) 

 

Figure 2. Results on eight different kernel on Kohler dataset (a) Blur Kernel 1, (b) Blur Kernel 2, (c) Blur 

Kernel 3, (d) Blur Kernel 4, (e) Blur Kernel 5, (f) Blur Kernel 6, (g) Blur Kernel 7, (h) Blur Kernel 8 [21] 
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Figure 3. Results on eight different kernel on Kohler dataset (a) Blur Kernel 1, (b) Blur Kernel 2, (c) Blur 

Kernel 3, (d) Blur Kernel 4, (e) Blur Kernel 5, (f) Blur Kernel 6, (g) Blur Kernel 7, (h) Blur Kernel 8 [21] 

 

 

4.2.  Image quality metrics comparison 

In an image processing, any processing implied to the given image causes the degradation in image 

quality. Moreover, to test the efficiency of CCM approach it is essential to perform similarity test, in this 

paper we have selected SSIM and PSNR as two image quality metrics which is used for determining how 

much quality is lost.  

 

4.2.1. PSNR (Peak Signal-to-noise Ratio) 

PSNR is the value observed in db (decibels) between the two-given image, here the ratio is 

considered for the original image and the reconstructed image, higher PSNR indicates the better-

reconstructed image. PSNR represents the peak error image. Table 1 presents the comparison of various 

technique on the eight different kernel. In Table 1, first column presents the type of Blur kernel, which is 
placed in respective order of BK1 to BK 8. Second, third, fourth and fifth column represents the various state 

of art technique sixth column presents the PSNR value of existing protocol. Last column presents PSNR 

value of proposed model i.e. CCM (constraint condition model). Moreover, it is observed that every other 

model possesses the PSNR model below 30; existing model achieves the 30.235 whereas our model achieves 

the value of 34.383 in case of BK1. In case of BK2, our method achieves the PSNR value of 36.615 when 

compared to the existing value of 30.56, in case of BK3 CCM achieves 35.63 in comparison with existing 

model of 28.55. In case of BK4, CCM achieves the value of 35.93 when compared to the existing model of 

22.652; BK5 of CCM achieves the value of 34.814 when compared to the existing value of 31.397 while 

other method remains on the lower side. Similarly, BK6, BK7 and BK8 achieves the PSNR value of 35.536, 

33.631, 34.190 respectively in comparison with the existing model value of PSNR 21.073, 23.144 and 23.687 

value respectively.  
 

 

Table 1. Mean PSNR comparasion with various state-of-art technique 
Type of Blur Kernel krishnan et.al. [23] pan et.al.[9] pan et.al.[8] xu.et.al.[24] tang et.al.[25] CCM 

BK1 21.316 29.9131 27.841 26.293 30.235 34.3831 

BK2 20.292 29.8022 27.877 27.302 30.562 36.615 

BK3 22.171 30.0292 26.758 24.287 28.550 35.6320 

BK4 18.313 21.652 21.241 20.363 22.652 35.9360 

BK5 22.754 30.802 29.264 28.674 31.397 34.8149 

BK6 17.187 19.793 19.387 19.215 21.073 35.526 

BK7 18.504 22.155 21.601 21.092 23.144 33.631 

BK8 19.256 22.535 22.541 21.969 23.687 34.190 
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4.2.2. SSIM (structural similarity index) 
Structural Similarity index is the method for perception-based model and it considers the image 

degradation as the given perceived change in any structural information. Moreover, it also incorporates 

phenomena such as contrast masking and luminance masking. Table 2 represents the comparison of various 

technique along with the existing model. Moreover, comparison has been done by considering the 8-blur 

kernel; meanwhile the higher value of SSIM indicates the model efficiency is higher. In case of BK1 and 

BK2 our proposed model achieves the value of 86.39 and 91.66 when compared to the existing model 85.77 

and 91.66 respectively, whereas other model remains on the lower side. In case of BK3, BK4 and BK5 

existing model achieves the SSIM value of 82.21 and 58.07 and 88.01 whereas CCM model achieves 90.20, 

89.29 and 89.29 respectively. Similarly, in case of BK5, BK 6 and BK7, the existing model achieves SSIM 
value of 47.01, 59.08, and 64.78 whereas CCM model achieves value of 89.29, 90.48 and 84.99 respectively. 

In case of BK8, existing model achieves PSNR value of 64.78 and CCM achieves 88.57. Moreover, through 

the comparison analysis it can be observed that CCM achieves the higher SSIM value for all eight kernel. 

 

 

Table 2. Mean SSIM comparasion with various state-of-art technique 
Blur Kernel Type Blur 

Kernel 1 

Blur 

Kernel 2 

Blur 

Kernel 3 

Blur 

Kernel 4 

Blur 

Kernel 5 

Blur 

Kernel 6 

Blur 

Kernel 7 

Blur 

Kernel 8 

krishnan et.al. [23] 66.27 59.61 70.81 45.84 74.71 39.51 46.38 51.74 

pan et.al.[9] 82.34 84.13 76.26 54.86 87.07 44.95 57.27 62.49 

pan et.al.[8] 81.96 82.49 79.1 54.62 86.67 44.88 54.04 60.38 

xu.et.al.[24] 81.08 82.61 74.18 52.21 85.64 45.53 52.42 60.09 

tang et.al.[25] 85.77 85.93 82.21 58.07 88.01 47.01 59.08 64.78 

Proposed (CCM) 86.3957 91.6608 89.4607 90.2075 89.2936 90.4837 84.9932 88.5793 

 

 

5. CONCLUSION  

In this paper, we have proposed an efficient technique towards the blind deblurring named CCM 
(constraint conditional model), the main aim of CCM is to restore the image in its original form; the best 

advantage of CCM is that it provides handsome tradeoff between the image quality and efficiency. 

Furthermore, CCM is evaluated considering the three standard dataset i.e. Levin, Kohler and Sun, we have 

shown the image of all the eight-blur kernel result and later the comparison analysis is performed considering 

the two image quality metrics PSNR and SSIM. Constraint conditional model achieves the higher value of 

PSNR and SSIM compared to other techniques; this indicates that our method is highly efficient and 

successful in deblurring and restoring the original image. In addition, the deblurring is the vast image-

processing concept and is improvised day by day, considering the future work several parameters have to be 

considered along with the various dataset and further this research work can be apply in the field of patern 

recognition, for the purpose of detecting text from blurred and low resolution images.  
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