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 The process of product development in the health sector, especially 

pharmaceuticals, goes through a series of precise procedures due to its direct 

relevance to human life. The opinion of patients on a particular drug can be 

relied upon in this development process, as the patients convey their 

experience with the drugs through their opinion. The social media field 

provides many datasets related to drugs through knowing the user's rating 

and opinion on a drug after using it. In this work, a dataset is used that 

includes the user’s rating and review on the drug, for the purpose of 

classifying the user’s opinions (reviews) whether they are positive or 

negative. The proposed method includes two phases. The first phase is to use 

the global vectors for word representation model for converting texts into the 

vector of embedded words. As for the second stage, the deep neural network 

(bidirectional long short-term memory) is employed in the classification of 

reviews. The user's rating is used as a ground truth in evaluating the 

classification results. The proposed method presents encouraging results, as 

the classification results are evaluated through three criteria, namely 

precision, recall and F-score, whose obtained values equal (0.9543, 0.9597 

and 0.9558), respectively. 
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1. INTRODUCTION 

Since the turn of the century, sentiment analysis developed in such a way that it has become among 

the most actively researched areas of natural language processing (NLP), particularly due to the coinciding 

growth in social media communication such as reviews, forum discussion, and (micro) blogging services, as 

well as the enormous amount of opinionated data available in digital form. Other fields that overlap with this 

discipline are data mining, web mining, text mining, and information retrieval [1]. NLP can be defined as a 

number of computational techniques used to analyze natural language texts so as to enable computers of 

understanding human language, and the sentiment classification of online review data is considered to be an 

essential process and of high importance.  

The discipline of opinion mining is found at the overlap between each of information retrieval and 

computational linguistics [2], further extending to fields of management and social sciences, including 

https://creativecommons.org/licenses/by-sa/4.0/
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finances, politics, communication, and the health sector, as it tends to be important not only to business but to 

the society as a whole. Its rapid growth and development can be traced back to the notion that opinions are 

the centre around which almost all human activities revolve, as these essentially influence our behavior. The 

way in which others view the world and create an evaluation of it are, to a certain extent determined by our 

beliefs and perspectives upon reality. Therefore, we often tend to look for other's opinions before making a 

certain decision, and the latter is true for both individuals as well as organizations [3].  

A considerable number of tools have been developed for opinion mining to be used in analyzing 

consumer opinions in most major business environments, such as travelling, accommodation, consumables, 

materials, products, and services [4]. However, the health sector has witnessed relatively less development. 

Drug surveillance, for example, is considered to be an essential factor in terms of drug safely soon after the 

release of a certain drug to public use. Since drug trials are usually conducted with a restricted number of 

subjects, the chance of detecting any uncommon adverse effect tends to be minimal [2].  

At present time, the safety of pharmaceutical products is determined by certain clinical trials and 

specified testing protocols [5]. These researches are often conducted under standard conditions, restricted by 

time and number of test subjects. This could potentially lead to cases where discrepancies in selecting 

patients, as well as treatment condition, could significantly affect the drug's efficiency and the possible risks 

of adverse drug reactions (ADRs) [6].  

Deep learning methods could be described as being methods of several representation levels, which 

are obtained by means of the composition of simple yet non-linear modules, each of which has the ability of 

transforming a representation from a particular level (starting with the raw input) to a higher representation at 

a level of a little more abstractness. Composing a sufficient number of such transformations enables the 

learning of functions that are of considerable complexity [7]. For the analysis of patient's opinion on the 

effectiveness of drugs, this study proposes the integration of GloVe, an efficient NLP transfer learning 

model, with BiLSTM, being a typical state-of-the-art bi-directional model. The vector representation of a 

word is of great use in text classifying, clustering, and retrieving information. There are a number of benefits 

observed when comparing word embedding methods with bag-of-words representations. The BiLSTM takes 

into consideration efficient amounts of contexts both before and after a word, thereby eliminating the issues 

of context limitation that is found in feed-forward models. 

 

 

2. RESEARCH METHOD 

2.1.   Global vectors for word representation 

In this work, we used the pre-trained embedding of GloVe [8], [9] with a 300-dimensional, which is 

paired with an n-gram embedding. For the embedding of words within a vector space, the GloVe model is 

used in the examination of the Xij presence matrix in a large text block representing the user's reviews on 

drugs. Numeric vectors that represent user reviews are obtained. GloVe can be described as an unsupervised 

learning algorithm used to obtain vector representations for words [10]. The training of the main idea is 

stated as follows: 

 

  
             (   ) (1) 

 

where           represent the trained vectors, and           indicate the scalar bias terms related to the 

words i and j, respectively. The essential aspects of training processes in GloVe include: 

a) A weighting function f to eliminate very commonly occurring words (like stop words), as these tend to 

add noise and are not over weighted;  

b) Rare words are not over weighted;  

c) The co-occurrence strength, whenever modeled as a distance, needs to undergo smoothing by means of 

a log function. 

 

The final loss function for GloVe [11] model will be as follows:  

 

  ∑          
             (   ) 

 
      (2) 

 

where V is a complete vocabulary, and               
             and f(x)=1 otherwise. 

 

2.2.   Long-short-term-memory deep neural network (LSTM-DNN) 

LSTM is a distinct case of RNNs. It is designed to cope with the problem of gradients that explode 

or vanish [12]. The basic idea behind the LSTM is the existence of a memory cell and a number of gates. 
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These memory cells and gates are added to each neuron in the network [13]. The principle of LSTM work is 

transmitting the important information in a reliable way over a number of time steps onto the next time step. 

LSTM cell whereby the gates in the LSTM model are used with additional parameters can be applied to a 

memory circuit used to memorize or store the information for a long term from the recurrent layer [14]. The 

input of RNN model is a sequence {x1, x2, ..., xn} that uses the following recurrence. 

 

              (3) 

 

where: 

                          
                        
                           

 

The gates arrive to the recurrent function   to cope with vanishing or exploding 

problems. The LSTM cells are applied as follows: 
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where: 

it  is the input gate. 

ft  is the forgete gate. 

ot_t  is the output gate 

While W and b represent the parameters of LSTM, and         ͂ the present cell state and the new 

candidate values for cell state respectively. The sigmoid function is used three times in (             ), 
respectively. The output of these gates is between 0 and 1 as in (4) to (6). The decision of the three gates 

depends on the     current input and       the previous output. The forget gate    is responsible for allowing the 

amount of previous state to pass. The input gate    decides whether the recent data of the input demands an 

update or append to the cell state [15]. The output gate    determines the data to be output depending on the cell 

state. These two gates function side by side to learn and store information related to the long and short-term 

series [13]. The cell state is the core of the LSTM work, as it is regarded to be a type of conveyor belt [16]. 

 

2.3.   Bidirectional LSTMs 

Bidirectional LSTMs extend from traditional LSTMs [17], and they could enhance the model 

performance in terms of sequence classification issues. In situations wherein all time steps of the input 

sequence have been provided, the Bidirectional LSTMs trains two LSTMs [18] rather than just one on the 

input sequence: the first one on the input sequence will be as-is, whereas the other is on a reversed copy of 

the input sequence. Given that these present an extra context to the network, they will lead to a relatively 

faster and more comprehensive learning on the problem in case [19]. 

Bi-LSTMs have been found to be particular of use in cases that require a context for the input, 

including sentiment classification. In unidirectional LSTM, the information seems to flow backwards, thus 

from back to front. In contrast, in Bi-directional LSTM the information flows both backwards and forwards, 

by means of two hidden states, hence the Bi-LSTM's wider comprehension on the context [20]. Bi-LSTMs 

have been applied in escalating chunks of input information that are of use to the network. There are 

structures of RNN with LSTM and RNN with Bi-LSTM [21]. Essentially, the BRNN undergoes a procedure 

whereby the neurons of a normal RNN are broken to bidirectional ways. The first is for the backward states 

(negative time direction), whereas the second is for the forward states (positive time direction). There is no 

connection between the input of the reverse direction states and the two former states’ results. The BiLSTM 

is structured as illustrated in Figure 1. As for the directions, the input data regarding the past and future of the 

current time frame could be applied, meanwhile the standard RNN needs the delays to include future data. 
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Figure 1. BiLSTM 

 

 

3. RELEATED WORK 

Qu et. al. introduced a bag-of-opinions review text representation model that differs from alternative 

models of this type, through which the sentiment phrases have been obtained. Viewpoints are composed of a 

triple aspect, namely a sentiment word, a modifier, and a negative word. To exemplify, in the phrase “not 

quite well”, “well” is a sentiment word, whereas “quite” is a modifier, and “not” is negative word. As for 

sentimental classifications which only identify the tendency of a phrase, being positively or negatively, 

modifiers are not very significant, meanwhile for RRP, each of the modifier and the negative word are of 

importance. With a labeled domain-independent corpus (from multiple domains), a constrained ridge 

regression model will be first applied for learning every viewpoint feature (sentiment intensity and score), 

after which the traditional unigrams feature is extended by means of viewpoint features for achieving RRP [22]. 

There are a number of researches that make use of opinion mining within the medical field, 

particularly by means of machine learning techniques, greaves, ramirez-cano, millett, darzi, and donaldson 

(2013) conducted an analysis of patient’s opinions on various factors of hospital performances in the United 

Kingdom. The authors applied four different methods, to see which gave the quickest and most accurate 

results: naïve bayes multinomials (NBM) decision trees, bagging, and support vector machines. There was 

81%, 84%, and 89% agreement between quantitative ratings of care and those derived from free-text 

comments using sentiment analysis for cleanliness, being treated with dignity, and overall recommendation 

of hospital respectively (kappa scores: .40–.74, P<.001 for all) [23]. 

Nikfarjam et al. used association rule mining so as to identify patterns, i.e. combination of terms, or 

conditional random fields (CRFs), for the extraction of mentions of ADRs. Since it is implicitly assumed that 

a patient's post on ADRs typically expresses negatively tending sentiments, examined the impact of using 

sentiment analysis features to enrich a lexicon-based ADR identifying method [24]: 

a) Gopalakrishnan et al. analyzed the extent to which patients were satisfied with a particular drug, 

through the use of a supervised learning sentiment analysis approach. There are three levels of polarity 

classified in this study, drawing a comparison between SVM and neural network based methods [2]. 

b) A. Navindgi and et al. (2016) made use of a subjectivity lexicon as well as machine learning algorithms 

to analyze the sentiment in posts on forums that discuss the topic of hearing loss. We report experiments 

on a sentiment-labeled corpus of posts taken from a medical support forum. they argue that not only is a 

more fine-grained approach to text analysis important but simultaneously recognizing the social 

function behind affective expressions enable a more accurate and valuable level of understanding [25]. 

 

 

4. THE PROPOSED SYSTEM 

The current section presents a detailed explanation of the proposed system. Figure 2 shows the 

structure of the proposed system in this work. The dataset used in this work is obtained from the Kaggle 

website for retrieving user reviews and ratings on drug experience, namely the UCI ML Drug Review 

dataset. It involves user reviews on specific drugs, as well as any related conditions and a 10-star user rating 

that reflects a comprehensive view on the user's satisfaction. The emotion dataset consists of 215,063 

instances, and there are 6 attributes in the dataset. The total number of individual drugs within the dataset is 

about 6345 drugs. 
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The dataset attributes are: 

a) Drug name (categorical): name of drug 

b) Condition (categorical): name of condition 

c) Review (text): patient review 

d) Rating (numerical): 10 star patient rating 

e) Date (date): date of review entry 

f) Useful count (numerical): number of users who found review useful 

The dataset was explored to find any important statistics that help in understanding and analyzing 

the content of the data set. The dataset contains 215,063 instances of reviewers and 6345 drugs. Supervised 

machine learning approaches require labeled data to classify opinions in reviews. The text reviews (patient 

review) are assigned a label according to the rating (10 star patient rating). The text review consists of a 

written text that explains the rating score of the review. As the reviews are conducted by different persons 

with varying backgrounds, the intended meaning of a 10 star review will differ from one user to another. The 

patient review is then assigned an opinion class according to the rating in the data format. The assigned 

review class is positive whenever the rating is >=5, otherwise, if the rating is <5 then the class label will be 

negative. Figure 3 shows the count of the rating value. 

 

 

 
 

Figure 2. Proposes system 

 

 

 
 

Figure 3. The count of rating value in the dataset 

 

 

a) The two rows of the dataset dealt with are the user reviews and rating.  

b) To get the words vector embedding, we employed the GloVe model, with the user reviews as 

its entry, and after its application this model the words vector embedding is obtained. The 
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pre-trained embedding of GLoVe word is used, which is paired with n-gram embedding 

characteristics, and is retained throughout the training. 

c) To perform the process of classifying user reviewers into two classes, which are positive 

reviewers and negative, the BiLSTM Deep Network is employed. The emotion dataset 

consists of 215,063 instances, split to 161,297 as training data and 53,766 as testing data. The 

rating per review labeled as integer numbers between 1 and 10.  

d) The units of the BI-LSTMs are described in 128 hidden dimensions, and the initial learning 

rate is trained using an ADAM optimizer. For the embedding layer, we defined the drop-out 

rate. The batch training was performed with a batch size of 128. 

e) RNNs will be used due of secret states, as they recall prior knowledge and link it to the 

current mission. Long short-term memory networks (LSTM) are an RNN subset, specialized 

in collecting information for longer periods of time. In addition, a bidirectional LSTM holds 

contextual details in both directions, which is very useful when classifying text.  

 

 

5. EXPERIMENTAL RESULT 

For the evaluation of the efficiency of this classification model, the class must be compared with the 

ground line. There are multiple criteria to realize classification effectiveness. Experimental results are 

conducted on the ground-truth, based on the used dataset. As mentioned earlier, the user's reviews were 

sorted on the dataset of the corresponding rating value, and this enabled us to adopt rating as a category on 

the basis of which we classify the user's reviews. In this work, three criteria are used namely precision, recall 

and f-score. 

Precision or confidence (as called in data mining) indicates the amount of predicted positive cases 

representing correct real positives. 

 

          
  

  
 

 

   
   (10) 

 

where TP is true positive and PP is predicted positives and TP is real positive. 

Recall or sensitivity can be defined as the rate between the number of correct detections for 

anomalous measurements to the total sum of anomalous measurements. 
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F-Measure provides a single score that balances both the concerns of precision and recall in one 

number. 

 

         
                  

                
   (12) 

 

when training the Bi-LSTM deep network, we obtained a precision value of 0.9543, while Recall and F-

Measure were 0.9597 and 0.6558, respectively. Figure 4 shows the confusion matrix to the classification 

result. 

For the purpose of examining the relative performances of classifying methods in the context of 

multiple accuracy evaluation measures, the result of Bi-LSTM has been compared with a number of 

classifiers that are well known in the machine learning field. Table 1 lists the result of comparison.  Table 1 

presents a summary of the value for each accuracy measure that has been obtained through five classification 

techniques applied to the user reviewer dataset. It indicates that the results of the Bi-LSTM are the best 

results. Figure 5 shows the criteria for evaluating the efficiency of the proposed work used in comparison 

with four other classifiers, as the results show the superiority of the proposed system over the rest of the 

classifiers. 

 

 

Table 1. The classifiers results 
Classifier Precision Recall F-Measure 

Bernolli 0.8829 0.8386 0.8602 

Random forest 0.8869 0.9451 0.9377 

Decision tree 0.8863 0.9351 0.9376 
Kneighbors 0.8586 0.9390 0.9235 

BiLSTM 0.9543 0.9597 0.9558 
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Figure 4. The confusion matrix of classification result 

 

 

 
 

Figure 5. The result of 5 classifiers 

 

 

6. CONCLUSION 

According to the experiment, the integrated GloVe and BiLSTM models have achieved good scores 

in terms of F1-score, Precision and Recall. This shows a prominent inspiration for new ideas to be applied in 

other future works. The model achieved a sufficient performance considering the cost of massive computing 

power. In this study, the user's reviewers are used as a label for the two classes, the positive and the negative 

class, thereby dividing the ten-scores into two-parts only. In future works, it is possible to use the model after 

implying several improvements in order to predict the user’s rating through their reviewers. 
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