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1. INTRODUCTION

Bathing water quality has many health implications [1, 2]. Assessments on sea bathing water quality
are determined on the basis of criteria defined by regulation on sea bathing water quality (OG 73/08) and
the EU directive on management of bathing water quality No 2006/7/EC. Traditionally, bathing water quality
is measured and published by public health authorities. However, although effort is made to provide timely
information, information about bathing water quality is often not published on time and does not reach the
public on time to prevent bathing in polluted water. As an example, if a measurement for one location shows
good water quality the next measurement is scheduled in 15 days. State of water quality in a given moment is
result of previous nearby activities and events and any deterioration of water quality that happens in that period
will not be detected.

In this paper we are investigating if it is possible to make assessment of the bathing water quality
based on values of individual bands or combination of bands from collected images. Collected images we
used in this study are provided by satellite sentinel-3 using ocean and land colour instrument (OLCI) and sea
and land surface temperature instrument (SLSTR). These images are available for scientific and commercial
exploitation. In order to evaluate and compare this collected data, we implemented k-nearest neighbors (KNN)
and decision tree algorithms (DT) and applied them on in sifu measurements data on sea bathing water quality
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at the beaches in the Republic of Croatia. This measurements data is public and published by Institute of
Oceanography and Fisheries from Split, Croatia [3].

Responding quickly to events that pose a risk to human health is a remote sensing mission, so we
propose a method and a software system to be used by authorities to make rapid assessment of bathing water
quality and detect possible deterioration of bathing water quality to schedule additional in situ measurements
when necessary. This tool would be beneficial for public health, since deterioration of bathing water quality
would be detected more quickly than having only 15 days scheduled measurements. All of these research and
implemented algorithms lead us to the first prototype of software system which will be used for classifying
bathing water quality in the area in the Bay of Kastela and the Bra¢ channel.

2.  RELATED WORK

Based on directive 2006/7/EC of the European parliament and of the Council, each member state of the
European Union need to control coastal bathing water quality by measuring the concentration of Escherichia
Coli, Intestinal Enterococci, Total Coliforms and Faecal Coliforms. The results of the monitoring of bathing
water quality are disseminated to the public via web page [3, 4]. In recent years data driven prediction has
found its application in many domains. Model driven approach requires hypothesis of physical background
of phenomenon and modeled event, while data driven approach uses data and mathematical operations on
large set of data to find laws and correlations between variables using statistics and filtering. Aside from
in situ measurements, there is increasing number of the studies using remote sensing data and techniques for
assessment of bathing water quality [5]. Their focus is on optical properties as well as chlorophyll [6], turbidity,
total suspended matters [7] and dissolved organic matters [8]. Different sensors onboard satellites or aircraft
platforms provide an opportunity to choose the most adequate one for the analyzing bathing water quality. In
[9] authors used Landsat-8 thermal images for determination of bathing water quality.

Beside remote sensing techniques, there is a wide use of hyperspectral images from drone based
coastal water quality monitoring. Specifically, hyperspectral monitoring can be used for measuring turbidity,
colored dissolved organic matter (CDOM) and phytoplankton used for characterisation of the spectra of bacteria
responsible for water quality [10]. In this paper we decided to use Sentinel-3 data as input data for assessment
of bathing water quality on a case study area in the Bay of Kastela and the Bra¢ channel.

3. MATERIALS AND METHODS

Thanks to the governments programs, such as Copernicus and NASA, there is a vast amount of freely
available data which originates from a remote sensing. Remote sensing data comes from various sensors
mounted on satellites. The data provided by sensors is characterized by wavelengths (bands or channels), time
resolution and spatial resolution. Usually, a sensors measures several bands of wavelength in a single capturing.
Specific bands or a combination of bands values can be used for detecting different phenomenon on the Earth
surface. As shown in previous analysis, efforts have been made to find correct equations to measure features
such as surface temperature, salinity and chlorophyll.

In this paper we investigate if we can identify features of various satellite bands that can indicate
changes in bathing water quality. The whole work is strictly data driven - we examined changes in features
of remote sensing signals in case of bad bathing water quality. We use data obtained from satellite sensors
monitoring both land and sea and associate their values to measured water quality in search for indicators that
can detect or predict incidents of lower bathing water quality.

The research question of this study can be formulated as. Is it possible to pinpoint relevant remote
sensing bands for assessment of bathing water quality using data driven approach? To answer this question we
selected a study area and appropriate data and performed a case study to demonstrate the data driven assessment
of bathing water quality using data obtained from Sentinel-3 satellite and discussed results.

3.1. Study area

The study area is located in the Bay of Kastela and the Bra¢ Channel, as shown in Figure 1. Both
locations are located near the town of Split, which is the second largest city in the Republic of Croatia. The
main motivation for using this study area was the exceedance of the limit values in summer of 2019 defined
by Regulation on Sea bathing water quality (OG73/08) for the microbiological indicator Escerichia Coli and
Enterococci. Having in mind these in situ results, we were encouraged to use remote sensing techniques,

Remote sensing data driven bathing water quality assessment using sentinel-3 (Antonia Senta)



1636 a ISSN: 2502-4752

machine learning algorithms and data mining, in effort to relate in sifu data and data obtained from satellite
image processing.

Figure 1. The satellite image (Sentinel-2 L2A) of study area

3.2. Data sources

In this study we used images related to Sentinel-3 SLSTR and OLCI instrument. The argumentation
for using this specific satellite is that it provides the most suitable spatial and temporal resolution for the selected
area and the time period of the study. Apart from spatial and temporal resolution, the availability of images for
all bands via the API is another reason why we used the Sentinel-3 satellite for this study. For comparison, data
originating from moderate resolution imaging spectroradiometer (MODIS) consists of two satellites, terra and
aqua, has good time resolution, same as Sentinel-3 data, but worse spatial resolution for majority of bands so it
wouldn’t be a good choice for collecting and analyzing data for a short time period. Table 1 shows a comparison
of the spatial and temporal resolution for the Sentinel-2, Sentinel-3, Landsat-8 and MODIS satellites data and
shows that Sentinel-3 is the most suitable for our research.

Table 1. Comparison of satellite spatial and temporal resolution

Satellite Temporal Resolution Spatial Resolution Reference
Sentinel-2 <=5 days 10m, 20m, and 60m, depending on the wavelength [11]
Sentinel-3 <=2 days SLSTR: 500m for bands S1 to S6, 1km for bands S7 to S9, F1, and F2 [12]

OLCI: 300m [13]
Landsat-8 <=8 days 130m, thermal (100m resampled to 30m) and panchromatic (15m) bands [14]
MODIS <=2 days 250m (bands 1-2), 500m (bands 3-7), 1000m (bands 8-36) [15]

Satellite Sentinel-3 is developed by european space agency (ESA) as a part of copernicus programme.
Sentinel-3 is a satellite mission consisting of two satellites, Sentinel-3A and Sentinel-3B, developed to pro-
vide accurate and timely information for better measurements of sea surface topography, sea and land surface
temperature and ocean and land surface colour. Four main instruments on Sentinel-3 spacecraft are Ocean and
land colour instrument (OLCI), sea and land Ssurface temperature instrument (SLSTR), SAR radar altimeter
(SRAL) and microwave radiometer (MWR) [16]. The motivation to use sensors related both to the sea and land
remote sensing is found in the fact that the locations of measurements where we inspect bathing water quality
are located on waters in near vicinity of land. Bathing water can be considered as an interface between land
and sea and its current state is influenced by both sea and land features.

Images related to SLSTR instrument have 11 bands from which nine are spectral bands S1-S9 and
two additional bands are optimised for fire monitoring F1 and F2. Spatial resolution of images obtained by this
instrument is 500 m for bands S1 to S6, 1km for bands S7 to S9, F1 and F2. Revisit time for SLSTR is less
than or equal to one day using both satellites. OLCI instrument has 21 spectral bands, ranging from the visible
to the near-infra-red (400 nm to 1020 nm). Spatial resolution for this instrument is 300 m, while revisit time is
two days using both satellites [16].

All images collected from these satellites are taken in period of June 1% 2019 to October 1% 2019,
with cloud cover percentage less than 20% for SLSTR images. Data acquired by OLCI and SLSTR sensors
are available on Sentinel Hub EO Browser [17]. Measurements for Sentinel-3 SLSTR are processed at Level
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1B and represent top of atmosphere reflectance or brightness temperature, while data acquired with the OLCI
sensor are at full resolution and processed at Level 1 reflectance. Locations of interest are related to geograph-
ical coordinates of in situ measurements locations for which we have available data published by Institute of
Oceanography and Fisheries from Split, Republic of Croatia [18]. The band values for each location of the
study area were extracted from each image. Web scrapping, data filtering, consolidation and all data manipula-
tion was automated in Python [19] scripts.

3.3. Methodology

The methodology consists of several phases required to obtain results, and in this section we will
describe: data collection and consolidation, implementation of machine learning techniques for assessment
and prediction of bathing water quality.

3.3.1. Data collection and consolidation

The Sentinel-3 satellite, due to its short revisit time, is ideal for extracting data that is time-continuous.
This satellite sensors also have good spatial resolution suitable for a small study area. Acquisition of bathing
water quality data is done by web scrapping from the web site of Institute of Oceanography and Fisheries
from Split, Croatia. The quality of bathing water at a particular location can have one of four ratings: excellent,
good, satisfactory, and unsatisfactory. In situ measurement is performed every 15 days unless the measurement
shows pollution. In case of lower quality, measurement is done every day until the results are improved. Due to
the very small number of different ratings of samples for individual locations, we replaced these four classes of
ratings with two ratings, in a manner that excellent rating is denoted as good, and all other ratings are considered
suboptimal and denoted as notGood.

Remote sensing data was also retrieved using a web API from the Sentinel Hub EO Browser [17].
Images were collected in .tiff format georeferenced in the WGS 84 coordinate system (EPSG: 4326). Collected
images coverage corresponds to study area and selected time period - from June 1°¢ 2019 till October 15t 2019.
The values of each band for the observed time period were extracted from image related to the location (latitude
and longitude) of the in sifu measurement.

We constructed data set where each measurement represent a sample of data. Sample is described by
features of in situ measurement and values of each band for that day for two instruments of Sentinel-3 satellite.
Each sample is described with a set of features: the measurement date, the bathing water quality score, and
the band value for the observed measurement. The Table 2 shows the number of samples with respect to
bathing water quality evaluation and used instruments of Sentinel-3 satellite. In this way we associated each
measurement with a series of values of satellite sensor bands [20].

Table 2. The number of consolidated data samples in period of 1st June 2019 to 1st October 2019
Evaluation SLSTR  OLCI

good 865 475
notGood 119 32
Total 984 507

3.3.2. Data analysis and preprocessing

In this section we will present behaviour of all bands, separately for SLSTR and OLCI instruments.
We used all available data collected from satellite images consolidated within sifu measurements, so we could
get two classes of bathing water quality, where one is classified as good and other is classified as notGood
bathing water quality. Figures 2 and 3 present graphs of data distribution for instruments SLSTR and OLCI,
corresponding bands values and bathing water quality scores. SLSTR data distribution shows that distribution
of values for good and notGood bathing water quality are most distinctive for bands S5 and S6. Similarly OLCI
instruments bands value distribution graph shows the most distinctive values for bands B7, B8, B9, B10 and
B11.

After analysis of the distribution of all bands values in order to select bands appropriate for classifi-
cation problem, we decided to analyse bands behaviour in time domain for two locations, for which we knew
that overall rating was notGood opposed to those whose overall rating was good. To perform further analysis
we singled out two locations: one located at Kamp in Kastel Gomilica that was rated with an overall rating
as notGood and the other located at Zvoncac in Split with overall rating as good. We collected values from
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SLSTR and OLCT satellite instruments bands that correspond to selected two location for the continuous time
period from July 1% 2019 to August 31%* 2019. Based on the extracted data, we created time graphs of band
values for each location and tried to isolate bands whose values deviated the most for locations with good and
notGood bathing water quality. The time series graphs for all bands for both locations are shown below, one
for SLSTR instrument, as shown in Figure 4 and the other for OLCI instrument, as shown in Figure 5.

The SLSTR graph in Figure 4 shows the inconsistency in the bands values during 13 July 2019 to 16
July 2019 and 23 August 2019 to 27 August 2019, especially for bands S5 and S6. Based on the band value
graphs and in situ data measurements of bathing water quality, we can notice that inconsistency in the data of
band values usually occurred during the time, before, or after the determined bathing water pollution.

In Figure 5 we can notice the change of OLCI bands values for the period from August 20, 2019 till
September 7, 2019. A sudden change in bands values can be read for August 30, 2019, where the peak of the
line representing notGood bathing water quality is higher than the line representing good bathing water quality.
If we pay attention to the previous values of these two lines before the isolated peak, we can conclude that up
to that point the band values were following the same trend in periods when both locations had satisfactory
measurements.

Based on these observations, we can conclude that our analysis for all locations and for two singled
out locations picks out the same bands that have deviation in values between good and notGood measurements.
We choose bands S5 and S6 for SLSTR and B7, B8, B9, B10, B11 for OLCI instrument for further modeling of
more accurate algorithms for prediction of bathing water quality. This approach aims toward development of
a software system for remote sensing screening of bathing water quality prior to in sifu measurements. Such a
system can be used as a tool for scheduling in situ measurements, focused on the locations where deterioration
of bathing water quality is suspected.

Figure 2. SLSTR-data distribution of all bands
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Figure 3. OLCI-data distribution of all band
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3.3.3. Implementation of assessment and prediction

In this paper we implemented two machine learning algorithms. K-nearest neighbors and decision
tree classification as a tools for predictive modeling. Both of these algorithms are good recognition techniques
and are widely used for analysis and predictions in remote sensing data sets [21].

K-nearest neighbors (KNN) algorithm [22] is an efficient lazy learning algorithm widely applied in
pattern recognition and data mining in machine learning classification. It is analytically tractable and highly
adaptive to local information. KNN algorithm uses the closest data points for estimation. For each data point the
algorithm checks against the training table for the KNN. Since each data point is independent of the others, the
execution of search and score can be conducted in parallel. Samples for training are stored in an n-dimensional
space. When an unknown test label is given, the KNN classifier searches these samples which are closest to
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the unknown sample. Closeness is in this paper defined in terms of Euclidean distance. Euclidean distance
closeness was calculated on the basis of the band values and not geographical closeness.

Decision tree (DT) classification algorithm [23] creates a tree model from the data. Model is created by
using values of only one attribute at a time. Tree structure is made of root (formed from all of the data), internal
(splits) and leaf nodes. Each node in a decision tree has only one parent node and two or more descendant
nodes. The algorithm sorts the data set on the attribute’s value and then looks for regions in the data set that
clearly contain only one class and mark those regions as leaves. For the remaining regions that have more than
one classes, the algorithm chooses another attribute and continues the branching process with only the number
of instances in those regions, until it produces all leaves or there is no attribute that can be used to produce one
or more leaves in the conflicted regions.

These two algorithms were first applied to data set consisting of all bands of OLCI and SLSTR in-
strument and results are discussed. After the discussion, we selected distinguished bands values based on data
analysis of all bands for all locations and two singled out locations described in section 3.3.2. The results of the
applied algorithms will be depicted below.

4. RESULTS AND DISCUSSION

In this section the analysis performed on prepared data set will be presented and the results discussed.
The discussion is aimed towards argumentation whether selection of smaller subset of bands can be more useful
for assessment and prediction of bathing water quality.

4.1. Predictive models used on all SLSTR bands

The data set constructed from the SLSTR instrument, raw bands images are used as an input set for
K-nearest neighbor and Decision tree algorithms. For each algorithm, obtained results show influence of the
individual bands of the SLSTR instrument in decision if sample will be classified as good or notGood. Since
the data set we used for training the models is imbalanced-selected case study area has much larger number of
good measurements then notGoot we trained models with 50% of our data set, and used remaining 50% for
evaluation of results. We created a confusion matrix for each of the algorithms (KNN and DT) which shows the
performance of the classification model on a set of test data, for which the true values are known. The results
of the confusion matrix of both algorithms are shown on Figure 6 and 7. Both of these algorithms are highly
accurate, but since data set is imbalanced, model can fail to identify negative labels [24]. In our study, Decision
tree algorithm produced better and more precise results than K-nearest neighbor algorithm. The reason for this
is that decision tree algorithm identifies many more true positive values than the K-nearest neighbor algorithm
does, so even if accuracy of decision tree algorithm is smaller than accuracy of K-nearest neighbor algorithm,
true positive and false positive values are in better ratio and make accuracy more reliable.

precision recall fl-score support
Normalized confusion matrix

good 0.94 0.98 0.96 520
notGood 0.76 0.53 0.62 70

08

accuracy 0.92 590 good 0.023

macro avyg 0.85 0.75 0.79 590

weighted avg 0.92 0.92 0.92 590 06

Tue label

TN - True Negative 508

FP - False Positive 12

FN - False Negative 33 otGood 047

TP - True Positive 37 02

Accuracy Rate: 0.923728813559322

Misclassification Rate: 0.07627118644067797

Normalized confusion matrix good notGood
[[0.97692308 0.02307692] Predicted label
[0.47142857 0.52857143])

04

(@ (b)
Figure 6. KNN algorithm for SLSTR data, (a) Classification report, (b) Normalized confusion matrix
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precision recall fl-score support
Normalized confusion matrix

good 0.95 0.93 0.94 520 09
notGood 0.54 0.64 0.58 70

08

accuracy 0.89 590 good 07
macro avg 0.74 0.78 0.76 530

weighted avg 0.90 0.89 0.90 590 08

Tue label

TN - True Negative 481

FP - False Positive 39

FN - False Negative 25

TP - True Positive 45

Accuracy Rate: 0.8915254237288136
Misclassification Rate: 0.10847457627118644
Normalized confusion matrix

notGood

notGood
[[0.925 0.075 1 Predicted label
[0.35714286 0.64285714]]

(a) (b)

Figure 7. DT algorithm for SLSTR data, (a) Classification report, (b) Normalized confusion matrix

4.2. Predictive models used on all OLCI bands

We performed the same methodology on data from OLCI instrument and implemented K-nearest
neighbor and Decision tree algorithms. Amount of SLSTR data is almost double in volume compared to OLCI
data because of the OLCI instrument’s larger revisit time. Also, OLCI data is even more imbalanced, where
data classified as having good bathing water quality is in the majority compared to data classified as having
notGood bathing water quality. The results of the applied K-nearest neighbor and Decision tree algorithms are
shown on Figure § and 9.

Confusion matrix for both algorithms applied to OLCI data shows high accuracy. But if we look
closely, we will notice that because of imbalanced data set, neither of these two models are suitable for pre-
dicting deterioration of bathing water quality based only on OLCI data. True positive values in regards to true
negative values are in the minority, so our accuracy is not reliable parameter, although it has a high value. Our
intuition was that both instruments - OLCI typically used for ocean monitoring and SLSTR typically used for
land monitoring should be used for bathing water quality assessment since specific area of interest is located
near interface between land and sea.

precision recall fl-score support
Normalized confusion matrix

good 0.95 0.99 0.97 286
notGood 0.71 0.26 0.38 19

08

accuracy 0.95 305 good ooz

macro avg 0.83 0.63 0.68 305

weighted avg 0.94 0.95 0.94 305 06

Tue label

TN - True Negative 284

FP - False Positive 2

FN - False Negative 14 notGood 026

TP - True Positive 5 0z

Accuracy Rate: 0.9475409836065574

Misclassification Rate: 0.05245901639344262

Normalized confusion matrix good notGood
[[0.99300699 0.00699301] Predicted label
[0.73684211 0.26315789]]

0.4

(a) (b)

Figure 8. KNN algorithm for OLCI data, (a) Classification report, (b) Normalized confusion matrix
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precision recall fl-score support
Normalized confusion matrix
good 0.95 0.98 0.97 286
notGood 0.45 0.26 0.33 19
08
accuracy 0.93 305 good 0021
macro avyg 0.70 0.62 0.65 305
weighted avg 0.92 0.93 0.93 305 T 06
TN - True Negative 280 é 04
FP - False Positive 6
FN - False Negative 14 notGood 076
TP - True Positive 5 02
Accuracy Rate: 0.9344262295081968
Misclassification Rate: 0.06557377049180328
Normalized confusion matrix good notGood
[[0.97902098 0.02097902] Predicted label
[0.73684211 0.26315789]]
(@) (b)

Figure 9. DT algorithm for OLCI data, (a) Classification report, (b) Normalized confusion matrix

4.3. Predictive models used on selection of bands

Based on the analysis of individual bands from section 3.3.2., we decided to extract only the bands
where the largest differences in relation to good and notGood bathing water quality were observed. Similar to
previous analysis of data using algorithms, data used for training K-nearest neighbor and decision tree algo-
rithms using only selected bands is also imbalanced in a way that there is much more data with good evaluation
of bathing water quality. Data were obtained by merging data from the SLSTR and OLCI instruments based
on the date and location of the measured satellite values of the selected bands. The bands taken for processing
from the SLSTR instrument are S5 and S6, and from the OLCI instrument are B7, B8, B9, B10 and B11. Figure
10 shows difference of distribution of values for selected bands for good and notGood measurements.
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Figure 10. Data distribution of specific bands
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Another interesting observation is that bands we selected based on data analysis are the same bands
that are used in calculation of indices that are somehow related to bathing water quality. For example, bands
B8 and B11 are used in calculation of chlorophyll index a (chl-a) [25], total suspended matter (TSM), coloured
dissolved organic matter (CDOM) and secchi [26]. So, these bands are already proven to have influence on
water quality parameters [27]. One more reason why are this indices are good parameters for assessment
bathing water quality is that they are optical properties of the bathing water and affect the rapid reaction if
bathing water contamination occurs. These properties varies over a quite wide range on interface between land
and sea. As we expected, the results shown by confusion matrix for evaluation of KNN and DT based models
on selected bands is more promising for intended use than previous models Figure 11 and 12.

precision recall fl-score support
Normalized confusion matrix
good 0.97 0.97 0.97 426
notGood 0.61 0.58 0.59 33
08
accuracy 0.94 459 good
macro avg 0.79 0.77 0.78 459
weighted avg 0.94 0.94 0.94 459 06

Tue label

TN - True Negative 414

FP - False Positive 12

FN - False Negative 14

TP - True Positive 19

Accuracy Rate: 0.9433551198257081

Misclassification Rate: 0.05664488017429194

Normalized confusion matrix good notGood
[[0.97183099 0.02816901] Predicted label
[0.42424242 0.57575758]]

o4

notGood
0.2

(a) (b)
Figure 11. KNN algorithm results for specific bands, (a) Classification report, (b) Normalized confusion
matrix
precision recall fl-score support
Normalized confusion matrix

good 0.98 0.90 0.94 426

notGood 0.36 0.73 0.48 33 08

accuracy 0.89 459 good 07
macro avg 0.67 0.81 0.71 459

weighted avg 0.93 0.89 0.90 459 i

TN - True Negative 383

FP - False Positive 43

FN - False Negative 9

TP - True Positive 24

Accuracy Rate: 0.8867102396514162

Misclassification Rate: 0.11328976034858387

Normalized confusion matrix P notGood
[[0.89906103 0.10093897] Predicted label
[0.27272727 0.72727273])

Tue label

notGood

() (b)

Figure 12. DT algorithm results for specific bands, (a) Classification report, (b) Normalized confusion matrix

We consider that the prediction of bathing water quality using both algorithms on selected bands is
more accurate then the prediction based on all bands, because it has significantly higher effect for determining
the value of bands which are sensitive and have small difference between values of bands representing good
and notGood bathing water quality. The nature of the task of predicting deterioration of bathing water quality
is such that we prefer to have higher rate of false positive as opposed to false negative errors. Evaluation of a
model trained on selected bands with DT algorithm shows best value for recall of notGood measurement and
is the best candidate for implementing a software tool for early screening of bathing water quality.

Remote sensing data driven bathing water quality assessment using sentinel-3 (Antonia Senta)



1646 a ISSN: 2502-4752

5. CONCLUSION

This paper presents preliminary results of remote sensing data analysis aimed towards assessing
bathing water quality from remote sensing data. The method provided analysis of bands values behaviour
for different aspects of bathing water quality. Since we used only raw bands values, the lack of this method can
be various adverse weather events and cloud coverage, which are optical parameters that affect the bands values
of the individual image. Because of this parameters we decided to use only data set of images with cloud cov-
erage less than 20%. The results of this study indicate that it could be possible to construct a predictive model
based on remote sensing data for assessment of bathing water quality since remote sensing data covers aspects
of land and sea parameters. Due to small amount of data caused by the small number of in situ measurements,
results of K-nearest neighbor and Decision tree algorithms constructed in this study can not be generalized.
Based on these results we certainly got a broader picture of bands values behavior and limitations, resulting
in applying the algorithms to a smaller, but more reliable data set. K-nearest neighbor and Decision tree algo-
rithms display reliable confusion matrix for selected bands, even though confusion matrix has accuracy close
to 95% for K-nearest neighbor algorithm and close to 90% for Decision tree algorithm. The method provided
in this paper uses many simplifications in time and space dimensions, because only point of data associated
with measurement point was taken into account. In future work this will be extended by approximation of band
values based on image before and afterin situ measurement point, when image for the date of measurement is
not available. Also, we could increase volume of data using bands values extracted from images taken from
different satellites, which will complete time flow and spatial coverage of data. It is reasonable to conclude
that higher volume of data would provide more precise and applicable algorithms results for better prediction
of bathing water quality. More sophisticated algorithms for model training will also be investigated in future
work.
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