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Abstract
The paper studies the exponential lag synchronization of a class of delayed chaotic neural

networks with impulsive effects via the unidirectional linear coupling. Some sufficient conditions are
derived by establishing impulsive differential delay inequality and using M-matrix theory. An illustrative
example is also provided to show the effectiveness and feasibility of the impulsive control method.
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1. Introduction
In the past decades, there has been much attention on chaos synchronization due to its

potential applications such as secure communications, biological systems, information science,
and etc [1-2]. Since Pecora and Carroll originally proposed the drive-response concept for
achieving the synchronization of coupled chaotic systems [1], researchers have also proposed a
variety of alternative schemes for ensuring the synchronization.

Recently, impulsive control has been widely used to stabilize and synchronize chaotic
systems [3-8]. Its necessity and importance lie in that, in some cases, the system cannot be
controlled by continuous control. Additionally, impulsive control may give a more efficient
method to deal with systems that cannot ensure continuous disturbance. Furthermore, impulsive
method can also greatly reduce the control cost [8].

The study of dynamical properties of neural networks appears more and more due to
their extensive applications in differential fields such as signal and image processing,
combinatorial optimization, pattern recognition and etc [9-12]. In the electronic implementation
of a neural network, time delay will occur in the interaction between the neurons inevitably, and
will affect the dynamic behavior of the neural network model. In some particular cases, chaotic
and hyperchaotic attractors may be generated by the introduction of delays into neural networks
[13-15]. Therefore, some time-delayed neural networks could be as a model when we study the
chaos synchronization.

For long-distance communication, the transmission time of drive signal is
correspondingly long. So the lag synchronization can describe this case more precisely than the
complete synchronization. Motivated by the above discussions, the aim of this paper is to study
the exponential lag synchronization of chaotic delayed neural networks with impulsive effects.
By establishing impulsive differential delay inequality and using M-matrix theory, some criteria
for synchronization of impulsive delay neural networks are derived. An illustrative example,
along with numerical simulations is also provided to show the effectiveness and feasibility of the
developed method.

2. Model Description and Preliminaries
A class of time-delayed chaotic neural networks considered in this letter is described by

   ( ) ( ) ( ) ( )x t Ax t Bf x t Cf x t I      , (2.1)
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Where nx R is the state vector, time-delay 0  , , , n nA B C R  are constant matrices, nI R
represents the external input and the input-output transfer function : n nf R R is a continuous
and nonlinear function.

Remark 2.1. Several chaotic or hyperchaotic neural networks satisfy (2.1). For example, the
cellular neural network and the well known Hopfield neural network with or without time delay
belong to the class defined by (2.1).

The difference differential Equation (2.1) can be categorized as a kind of functional
differential equations, and rewritten as:

   ( ) (0) (0) ( )t t tx t Ax Bf x Cf x I      , (2.2)

Where tx is a continuous mapping defined on [ ,0] as ( ) ( )tx x t   , the right-hand side of
Equation (2.2) defines a functional mapping ([ ,0], )nC R to nR , where ([ ,0], )nC R denotes the
set of all continuous mapping from [ ,0] to nR . The solution space of Equation (2.2) is infinite-
dimensional, with initial conditions as any continuous functions defined on the closed interval
[ ,0] .

We now introduce the impulsive control for chaotic neural networks (2.1) as follows:

   ( ) ( ) ( ) ( ) , ,

( ) ( ) ( ) ( ), ,

( ) ( ), [ ,0],

k

k k k k k

x t Ax t Bf x t Cf x t I t t

x t x t x t H x t t t

x t t t



 

 

      

     
   



(2.3)

Where the discrete set { }kt satisfies 0 10 kt t t      , kt  as ,k

0( ) lim ( ) ,
kk t tx t x t

  0( ) lim ( )
kk t tx t x t

  and ( ) ( )k kx t x t  . H denotes the controller impulsive
matrix.

From the unidirectional linear coupling approach, a response system for (2.3) is
constructed as follows:

     ( ) ( ) ( ) ( ) ( ) ( ) , , ,

( ) ( ) ( ) ( ), ,

( ) ( ), [ , ],

k

k k k k k

y t Ay t Bf y t Cf y t I W x t y t t s t

y s y s y s H y s t s

y t t t

  

   

 

          

     
    



(2.4)

WhereW denotes the controller gain matrix, k ks t   and  .
Lag synchronization is characterized by ( ) ( )y t x t   for some constant 0  . Let

( ) ( ) ( )e t y t x t    be the synchronization error. The error system of the impulsive
synchronization is given by:

   ( ) ( ) ( ) ( ) ( ) , , ,

( ) ( ) ( ) ( ), ,

( ) ( ) ( ) ( ), [ , ],

k

k k k k k

e t A W e t Bg e t Cg e t t s t

e s e s e s H e s t s

e t t t t t

 

      

 

       

     
       



(2.5)

Where ( ( )) ( ( )) ( ( ))g e t f y t f x t    and ( ( )) ( ( )) ( ( ))g e t f y t f x t         .
Note that the origin is the equilibrium point of system (2.5). If ( )e t tends exponentially to

origin in evolution, exponential lag synchronization between two systems would be realized. Our
aim is to find some criteria on the controller impulsive matrix H and controller gain matrixW such
that drive system (2.3) and response system (2.4) are exponentially lag synchronized for any
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bounded initial condition, ( ) ( ), [ , ]e           with [ , ]sup ( )          , the notation

denotes the Euclidian norm of a vector or a square matrix.
For convenience, we introduce some notations used in this paper.
Usually E denotes an n n unit matrix. For , m nA B R  or , nA B R , A B means that each

pair of corresponding elements of A and B satisfies the inequality “  ”. Especially, A is called a
nonnegative matrix if 0A  , and z is called a positive vector if 0z  .

( ) { : | ( ) ( )nPC I I R t t     for t I , ( )t  exists for ( , )t   , ( ) ( )t t   for all but
points ( , )}ks   , where I R is an interval, ( )t  and ( )t  denote the left-hand and right-
hand limits of the function ( )t , respectively. Especially, let ([ , ])PC PC      .

For a m n matrix A , | |A denotes the absolute value matrix given by | | (| |)ij m nA a  .
Definition 2.1. A real matrix ( )ij n nD d  is said to be a nonsingular M-matrix if

0, , 1, 2, , ,ijd i j n   i j , and all successive principal minors of D are positive.
Lemma 2.1. Let ( )ij n nD d  with 0( )ijd i j  , then D is a nonsingular M-matrix if and only if the
diagonal elements of D are all positive and there exists a positive vector d such that 0Dd  or

0TD d  .
For a nonsingular M-matrix D , we denote ( ) { | 0, 0}n

M D z R Dz z    , which is
nonempty by the Lemma 1. For a nonnegative matrix n nG R  , the spectral radius ( )G is an
eigenvalue of G and its eigenspace is denoted by ( ) { | ( ) }nG z R Gz G z    , which includes
all positive eigenvectors of G provided that the nonnegative matrix G has at least one positive
eigenvector.

3. Impulsive Lag Synchronization of Chaotic Neural Networks
The following impulsive delay inequality is necessary to develop the main result in this

paper.
Theorem 3.1. Let  ( ) [ , )u t PC      satisfy the following impulsive differential delay
inequality:

( ) ( ) ( ), , ,

( ) ( ), , 1,2, ,

( ) ( ), ,

k

k k k

D u t Pu t Qu t t s t

u s Gu s t s k

u t t t

 

   





     


  
     

 (3.1)

Where ( )ij n nP p  with 0ijp  for i j , ( ) 0, ( ) 0, ( )ij n n ij n nQ q G g t PC      .
We define:

( ) ( )DG M D G    (3.2)

And assume that:
(H1) ( )D P Q   is a nonsingular M-matrix.
(H2) DG is nonempty.
Then there exist a positive vector 1 2( , , , )T

n DGz z z z  such that:

1
1( ) exp( ( )), [ , ), 1, 2, ,k

k ku t z t t s s k  
      (3.3)

where max{1, ( )}G  and the positive number  is determined by the following inequality:

[ exp( )] 0.E P Q z    (3.4)
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Proof. If G E , is a constant, then ( ) nG R  , so ( )DG M D  is nonempty, which shows

the assumption (H2) is reasonable. For any 1 2, DGz z  , we have 1 1 2 2 DGk z k z  for all 1 2, 0k k  .
Since ( )t PC  is bounded, by the definition of DG and condition (H2), there exists a

positive vector 1 2( , , , )T
n DGz z z z  such that the initial function of (3.1) satisfies.

( ) exp( ( )), .u t z t t           (3.5)

For the vector ( )DG Mz D  , by condition (H1) and the definition of M-matrix, we
have 0Dz  or ( ) 0P Q z  . By using continuity, we know that (3.3) has at least one positive
solution  , i.e.,

1( exp( )) 0, 1,2, , .n
i j ij ij jz p q z i n      (3.6)

Now we shall prove that:

1( ) exp( ( )), [ , ).u t z t t s      (3.7)

To prove (11), we first prove for any given constant 0  ,

1( ) (1 ) exp( ( )) ( ), 1, 2, , , [ , )i i iu t z t v t i n t s          . (3.8)

If (3.7) is not true, from the fact that ( )u t is continuous in 1[ , )s (since  ( ) [ , )u t PC      ),

then there must be a *
1[ , )t s and some integer m such that:

* * * *

*

( ) ( ), ( ) ( ),

( ) ( ), , 1, 2, , .

m m m m

i i

u t v t D u t v t

u t v t t t i n 

  

      
(3.9)

By using (3.1), (3.5), (3.7), (3.8) and 0 ( ), 0ij ijp i j q   , we obtain:

 
 

* * *
1

* *
1

*
1

* *

( ) ( ) ( )

(1 ) exp( ( )) (1 ) exp( ( ))

( exp( ))(1 ) exp( ( ))

(1 ) exp( ( )) ( )

n
m j mj j mj j

n
j mj j mj j

n
j mj mj j

m m

D u t p u t q u t

p z t q z t

p q z t

z t v t



      

   

   








   

         

     

     

(3.10)

Which contradicts the inequality of (3.8), and so (3.7) holds for 1[ , )t s . Letting 0  , then
(3.6) holds for 1[ , )t s . Using (3.1), (3.6), ( )z G and the definition of  , we can obtain that:

1 1 1 1 1( ) ( ) exp( ( )) ( ) exp( ( )) exp( ( )),u s Gu s Gz s G z s z s                 (3.11)

and so, we have:
1 1( ) exp( ( )), [ , ]u t z t t s s        . (3.12)

By a similar argument of (11), we can use (16) and derive that:

1 2( ) exp( ( )), [ , )u t z t t s s      . (3.13)

Therefore, by simple induction, we have:

1
1( ) exp( ( )), [ , ), 1, 2,k

k ku t z t t s s k  
      . (3.14)
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The proof is completed.
From Theorem 3.1, we have the following result.

Theorem 3.2. Assume that:
(A1) The neurons activation function f is Lipschitz-continuous, that is, there exists a
nonnegative diagonal matrix such that | ( ) ( ) | | |f y f x y x    .
(A2) Let ( ) | | , | | , :| |P A W B Q C G H        ; ( )D P Q   is a nonsingular M-matrix and

DG is nonempty.
(A3) Let max{1, ( )}G  , and there exists a constant such that:

1ln ( ) , 1,2, ,k kk s s k       (3.15)

Where the positive constant  is determined by the following inequality:

[ exp( )] 0E P Q z    for a given DGz . (3.16)

Then the origin of (2.5) is globally exponentially stable, implying that the two systems
(2.3) and (2.4) are global impulsive exponential lag synchronization.
Proof. From condition (A2), there exists a positive vector 1 2( , , , ) ( )T

n DG Mz z z z D    such
that 0Dz  , or ( ) 0P Q z  . By using continuity, we know that (3.16) has at least one positive
solution  .

Then calculating the upper right derivative | ( ) |D e t along the solution of (2.5), from the
condition (A1) and the definition of ,P Q , we have

| ( ) | ( ) | ( ) | | [ ( ( )) ( ( ))]| | [ ( ( )) ( ( ))]|

( ) | ( ) | | | | ( ) ( ) | | | | ( ) ( ) |

( ) | ( ) | | | | ( ) | | | | ( ) |

| ( ) | | ( ) |, , ,k

D e t A W e t B f y t f x t C f y t f x t

A W e t B y t x t C y t x t

A W e t B e t C e t

P e t Q e t t s t

   
   


 

          
           
      
    

(3.17)

And, | ( ) | | ( ) |, , 1, 2, .k k ke s G e s t s k    (3.18)

For the initial condition ( )t PC  , we can get:

| ( ) | exp( ( )),e t t t             , (3.19)

Where 1min { } (1,1, ,1)T
i n iz z     . From DGz , we have DG and so DG   .

All the conditions of Theorem 1 are satisfied by (3.17), (3.18), (3.19), conditions (A2)
and (A3). Then we obtain that:

1
1| ( ) | exp( ( )), [ , ), 1,2, .k

k ke t t t s s k    
      (3.20)

By (3.15), we have  and:

   1
1 2 1exp ( ) exp ( ) , [ , ), 1,2, .k

k k k ks s t t s s k   
         (3.21)

So, from (3.20) and (3.21), we derive that

1| ( ) | exp( ( )( )), [ , ), 1,2, .k ke t t t s s k            (3.22)

The proof is completed.
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4. Numerical Simulations
In this section, we give an example to illustrate the effectiveness of results obtained in

the previous sections. Consider a two-dimensional chaotic delayed cellular neural network with
impulsive effects.

1 1 1 1 1 1

2 2 2 2 2 2

( ) ( ( )) ( ( 1))
, ,

( ) ( ( )) ( ( 1))

( ) ( ) ( ) ( ), , {2,4,6, },

( ) ( ), [ 1,0],

k

k k k k k k

x x t f x t f x t
A B C I t t

x x t f x t f x t

x t x t x t H x t t t t

x t t t

 

       
                   

      

  





 (4.1)

Where  ( ) 0.5 | 1 | | 1 | , 1,2, 1.0, (0,0)T
i i i if x x x i I       , and:

1 0 1 / 4 20 1.3 2 / 4 0.1
, ,

0 1 0.1 1 / 4 0.1 1.3 2 / 4
A B C

 
 

     
               

. (4.2)

Clearly, the function  ( ) 0.5 | 1 | | 1 |i i i if x x x    is bounded and satisfies the condition (A1)
with diagonal matrix (1,1).diag  The controller impulse matrix H is chosen as (0.2,0.2)H diag .
The system (4.1) has a chaotic attractor with the initial condition ( ) (0.01,0.1) , [ 1,0]Tt t    (Figure
1).

Viewing (4.1) as drive system, under state coupling, the response system is constructed
as follows:

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

( ) ( ( )) ( ( 1)) ( ) ( )
, , ,

( ) ( ( )) ( ( 1)) ( ) ( )

( ) ( ) ( ) ( ), , {2 ,4 ,6 , },

( ) ( ), [ 1

k

k k k k k k

y y t f y t f y t x t y t
A B C W t s t

y y t f y t f y t x t y t

y s y s y s H y s t s s

y t t t






  



 

           
                          

         

   







, ], 

(4.3)

Where the initial condition ( ) ( 0.01, 0.1) , [ 1 , ]Tt t        .

Now we take 0.8  and the controller gain matrix
5.2 20

0.1 5.2
W
 
  
 

. Let ( ) ( ) ( 0.8)i i ie t y t x t   ,

then the error system of drive system (4.1) and respond system (4.3) is constructed as follows:

1 1 1 2

2 2 1 2

1 1 1 1

2 2 2 2

(5.2 / 4) ( ) 1.3 2 / 4 ( 1) 0.1 ( 1),

(5.2 / 4) ( ) 0.1 ( 1) 1.3 2 / 4 ( 1), , 0.8,

( ) ( ) ( ) 0.2 ( )

( ) ( ) ( ) 0.2 ( ), , {2.8,4.8,6.8, },

( )

k

k k k k

k k k k k k

e e t e t e t

e e t e t e t t s t

e s e s e s e s

e s e s e s e s t s s

e t

 

 
 

 

      

        

    

      







( ) ( ) ( 0.8) ( 0.02, 0.2) , [ 0.2,0.8].Tt t t t  








         

(4.4)

And we have:

5.2 / 4 0 1.3 2 / 4 0.1
, ,

0 5.2 / 4 0.1 1.3 2 / 4

5.2 (1 1.3 2 ) / 4 0.1 0.2 0
, ,

0 0.20.1 5.2 (1 1.3 2 ) / 4

P Q

D G

 
 





   
          
     
          

(4.5)

Where ( ) | | , | | , ( ), | | .P A W B Q C D P Q G H           One can easily verify that D is a
nonsingular M-matrix. By simple calculation, we have,

2
1 2 2 1 2 1 2

1
( ) ( , ) | 30 , , 0 , ( ) .

30
T

M D z z z z z z z G R
        
 

(4.6)
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So ( )M D and ( )G generate an intersection.

1 2 2 1 2 1 2

1
( , ) | 30 , , 0 .

30
T

DG z z z z z z z
      
 

(4.7)

Let (1,2)T
DGz   and 0.2  , then:

[ exp( )] [0.2 exp(0.2)](1,2) ( 2.207, 4.780) 0T TE P Q z E P Q          , (4.8)

Which implies that the condition (A3) with 1, 0   and 0.2  . Therefore, all the conditions of
Theorem 2 are satisfied, we can conclude that systems (4.1) and (4.3) are exponential lag
synchronization. The numerical simulations show that lag synchronization could be quickly
achieved. The phase plot of response system with the initial condition

( ) ( 0.01, 0.1) , [ 0.2,0.8]Tt t      is shown in Figure 2 and the state trajectory of variable ,x y is
shown in Figure 3. One can find that y retards x by a time period 0.8.

Figure 1. Drive System Figure 2. Response System

Figure 3. State Trajectory of Variable ( )x t and ( )y t ( 0.8  )

Remark 4.1. It should be noticed that the time delay influence the behavior of system. Let
vary from 0.845 to 1.0, system (4.1) always has a chaotic trajectory.

In the following, we research the relationship between the rate of exponential
synchronization  and time delay parameter by numerical calculation, it is shown in Figure 4.
And then, we fix 0.2  , let 0.85, 0.90, 0.95,1.0  respectively, and plot the stable region boundary
about parameters 11 12,w w in controller gain matrixW (Figure 5).
Remark 4.2. Region 1 2,A A and B represents stable and chaotic region, stable but non-chaotic
region, and unstable region respectively. In region 1A , the rate of exponential synchronization 

will decline with the increasing of time delay .
Remark 4.3. For a fixed value of  , the stable region will enlarge with the decreasing of time
delay , the range of gain matrix parameters could be broadened by parameter accordingly.
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Figure 4. Rate of Exponential Synchronization


Figure 5. Stable Region Boundary

5. Conclusion
In this paper, the exponential lag synchronization has been investigated via the

unidirectional linear coupling approach. Some more comprehensive criteria for the exponential
synchronization of a class of chaotic delayed neural networks with impulsive effects are derived.
An illustrative example, along with numerical simulations is presented to prove the effectiveness
and feasibility of the developed method. The relationships between the rate of exponential
synchronization, the range of gain matrix parameters and time delay parameter are shown by
numerical calculation.
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