
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 21, No. 3, March 2021, pp. 1830~1836 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v21.i3.pp1830-1836      1830 

  

Journal homepage: http://ijeecs.iaescore.com 

A new class of self-scaling for quasi-Newton method based on 

the quadratic model 
 

 

Basim A. Hassan, Ranen M. Sulaiman 
Department of Mathematics, College of Computers Sciences and Mathematics, University of Mosul, Iraq 

 

 

Article Info  ABSTRACT 

Article history: 

Received Sep 23, 2020 

Revised Nov 30, 2020 

Accepted Dec 23, 2020 

 

 Quasi-Newton method is an efficient method for solving unconstrained 
optimization problems. Self-scaling is one of the common approaches in the 
modification of the quasi-Newton method. A large variety of self-scaling of 

quasi-Newton methods is very well known. In this paper, based on quadratic 
function we derive the new self-scaling of quasi-Newton method and study 
the convergence property. Numerical results on the collection of problems 
showed the self-scaling of quasi-Newton methods which improves overall 
numerical performance for BFGS method. Keywords: 
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1. INTRODUCTION  

All over the complete paper, we deem the unconstrained minimization problem as: 

 
nR  x,  )( xfMin

 (1) 
 

The most widely used general iterative suggestion for problem resolution (1) is given by:  

 

kkkk

n dxxRx  10 ,
 (2)  

 

where 1kx
 is a new iteration point, kx

 is a current iterative point, 
0k

 is a stеp-size and kd
 is the 

search direction. (see, for example, [1, 2 and 3]). Quasi-Newton methods form an important class of 

numerical methods for solving optimization problems. For our purposes, we examine the general iterative 

scheme of quasi-Newton direction : 

 

0 kkk gdB
 (3) 
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where kB
 is an appropriate approximation of the inverse of the Hessian. If we apply the quasi-Newton 

equation to the chosen approximations kx
 and 1kx

, our task is to find a 1kB
 satisfying: 

 

kkk yB  1  (4) 
 

where kkkkk dxx   1  and kkk ggy  1 , see [4].  
This key of such methods is a matrix updating procedure, of which the BFGS method is the most 

successful and widely used can be separated into : 
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Let kH
 be the inverse of kB

. Then the inverse update formula of (5) method is represented as : 
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The Biggs modification of the BFGS formula to improve the performance of updates, can be written  
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which will satisfy : 

 

kkkk yB  1 , 
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Is then called Self-scaling of quasi-Newton methods. More details can be found in [5] 

The idea of variant self-scaling of quasi-Newton methods had been studied by many researchers for 

example, see (Oren, [6]); (Yuan, [7]) and (Basim and Hawraz [8]). A self-scaling of quasi-Newton algorithm 

was developed to decrease the number of iterations and preserves the global convergence on quasi-Newton 

algorithms. Interested researcher can refer to [9-12] for further studies and recent reference regarding quasi-

Newton. Next, derivation of the a new self-scaling Quasi-Newton are described and tested. 

 

 

2. A NEW SELF-SCALING QUASI-NEWTON METHODS 
In order to we derive the new self-scaling of quasi-Newton method we consider the second-order 

Taylor approximation as : 
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Substituting kx
 in to x  in equation (9) and using exact line search 

01  k

T

k dg
, then (9) we have: 
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 (10) 
 

In fact, by using exact line search with this function, the optimal step size k
 is given by :  
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From (10) and (11) we get : 
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Thus one of the possible choices in an approximation of kQd
 can be given by : 
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Since kkkkk dxx   1 , we obtain :  
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A good approximation to the Hessian matrix 
Q

 is a sequence of a positive definite matrices 1kB
 

which will satisfy : 
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The above relation we obtain the scaling denoted as 
1BR

k  and can be written as : 
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where : 
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So – called 
1BR

 method. 
 

2.1. Outline of the new algorithm 

The outline of the new algorithm is as follows : 

Step 0 : Choose an initial point 

nRx 0 , set 
.1k
 

Step 1 : If the stopping criterion is a satisfied stop.  

Step 2 : Compute kkk gHd 
.  

Step 3 : Find a k  which satisfies the Wolfe rule : 
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Step 4 : Generate a new iteration point by kkkk dxx 1 and calculate the new updating formula (7) 
and using (17). 

Step 5 : Set 1 kk  and go back to Step 1. 

 

 

3. GLOBAL CONVERGENCE PROPERTY OF THE NEW ALGORITHM 

Our main interest is convergence Property for the new Algorithm and defined by the relation : 

 

0inflim 


k
k

g
 (18) 

 

The BFGS update generate identical conjugate gradient search direction provided that the function 

quadratic and exact line searches are used. To prove that the new updates generate identical conjugate 

gradient search directions. We first introduce a useful lemma it can be proved in a similar way to the proof of 

Lemma 5.1 in [13].  

 

Lemma (2.1):  

If the BFGS algorithm is applied to the quadratic Function: 

xbQxxxf TT 
2

1
)(

 (19) 

Using the same starting point 0x
 and initial symmetric positive definite matrix 0H

, then: 
 

*

0

* gHgH k 
 (20) 

 

The detailed proof was given by Nazareth [14]. 

Powell (Powell, [15]), showed that, the conjugate gradient method achieves the limit : 
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if the level set 
 )()(: *xfxfx 

 is bounded and k
 is defined so that 

 1,01  kdg k

T

k  holds 

for all k . 
The following theorem are often used to explain the global convergence. 

 

Theorem (2.3) 

Assume that 
)(xf

 be a quadratic function defined in (19) and that the line searches are exact : if 

kH
 is any symmetric positive definite matrix and for the new updating formula, 
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where 
1BR

k  defined in (17), then the search direction as : 
 

111   k
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k
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k gHd
 (23) 

 

is identical to the Conjugate Gradient direction [H/S direction ] CGd
 and defined by: 
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Proof : 

The update (22) can be written as: 
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Now,  
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using the property 
01 k

T

k g
 quoted earlier which holds for line searches we get : 
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The vector 1kg
 can be substituted for 1kk gH

 by using lemma (2.1). Therefore : 
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We also know that 
BFGSd  and 

CGd  are identical (Nazareth, [14,15]), and 
newd  is identical to 

BFGSd  with exact line searches. Hence as shown in (27) becomes : 
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hence the proof. 

 

 

4. Numerical results  
In this section, several computational experiments are conducted on a series of unconstrained 

optimization test issues the specifics please see more [16] to explain the application and efficacy of the 

proposed process. Some other class from test problems was observed in [17-25]. Performance of a given 

methods was measured by two separate data: total number of iteration and total number of function 

evaluations, respectively. The stopping rule applied throughout was : “If 
,10)( 5kxf
 let 

;)(/)()(1 1 kkk xfxfxfstop 
 Otherwise, let 

)()(1 1 kk xfxfstop
. For every problem, if 

kg
 or 

5101 stop
is satisfied, the program will be stopped”, see [26].  

The graphs are plotted using data derived from numerical computations using the output model 

proposed by Dolan and More [27]. The suggested BR1 approach has the highest results in terms of both 

number of iterations as seen in Figure 1 and number of function evaluation Figure 2. 
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Figure 1. Number of iteration profile via dolan and more 

 

 
 

Figure 2. Number of function evaluation profile via dolan and more profile 
 

 

From Figure 1 and Figure 2, it is concluded that the most efficient algorithm in terms of the number 

of iterations is our method, being the fastest for 57% of the problems, followed by total number of function 

evaluations, that was the most efficient for nearly 66% of the problems. This is a very interesting fact. 

 

 

5. CONCLUSIONS 

In this paper, a self-scaling quasi-Newton method has been derived to find minimum for 

unconstrained optimization problem. Self-scaling of quasi-Newton methods which improved overall 

numerical performance of these methods.  
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