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 This article clarified the basic fiber bragg grating (FBG) apodization 

functions effects on the filtered optical acoustic signal (AS). Max optical 
acoustic power variations after acousto optic filter is clarified with the 
spectral wavelength variations. FBG apodization functions are uniform, 
Gaussian, and Tanh. We have tested the max optical acoustic power 
variations after various apodization FBG functions with the spectral 
wavelength variations. The max AS power amplitude after the electrical 
combiner is reported based various apodization FBG functions. The max 
optical AS after FBG is studied with various FBG lengths for various FBG 
apodization functions at the central wavelength of 1.55 μm. The max 

electrical power after power combiner unit is demonstrated with different 
FBG lengths for various FBG apodization functions at the central frequency 
of 193.1 THz.  
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1. INTRODUCTION BACKGROUND 

Optical communication system should satisfy the following basic specifications such as 

determination of transmission type (analog/digital); achieving the system fidelity (higher SNR/lower BER); 

larger transmission bandwidth (BW); longer repeater spacing (span); less cost of system installation; 
reliability (error-free transmission); less cost of system maintenance; and less of complexity [1-15]. While 

selecting a photodetector, the following factors are considered such as minimum optical power that must fall 

on photodiode to satisfy BER at specified data rate; less complexity of circuit; less cost of design; and less 

bias requirements [16-35]. Metal oxide technology is used to reduce the rise, fall and delay times. Metal 

oxide technology can be employed to achieve high speed performance, minimize transistor dimensions, so 

large transistors can be integrated on achip. The progress of transistors integrated on a single chip versus 

technology year can be studied in these researches. Bipolar complentary semiconductor transistors 

technologies are integrated with metal oxide technology to overcome the time delay and consequently to 

increase the flow rates. Next step in system designing is choosing a proper optical source, the important 

factors are less signal dispersion; higher data rate; longer transmission distance; less cost; efficient optical 

power coupling; and less circuit complexity [36-58]. 
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2. MODEL DESCRIPTION 

The setup model is illustrated in Figure 1. WDM transmitter has 100 GHz frequency spacing, power 

of 0 dBm, modulation line coding of non return to zero and flow rate of 40 Gbps. WDM transmitter generates 

the light signal with the previous technical specifications. The light signal can be modulated through acousto 

optical filter to delete the unwanted noise from the base band. The filtered AS is forward to FGB device to 

smooth the filtered signal. Fiber bragg grating (FBG) has input frequency of 193.1 THz. The Laser measured 

has 193.1 THz frequency of and input power of 10 dBm. SGs generate bits stream and it is digitalized coding 

through NRZ line coding modulation scheme. The encoded light signal from laser measured is directed to the 
ideal circulator. Ideal circulator has two inputs, one is the filtered AS through FBG devices and another is the 

encoded light signal. The output of the ideal circulator is directed to APD photodetectors.  

The basic function of APD photodetectors is electrical signal detection. The signal is amplified 

through transimpedance amplifiers. Transimpedance amplifiers have voltage gain of 600 ohm and noise 

figure of 6 dB. The two signals with amplification are combined together in order to be measured in the time 

and spectral domains.  

 

 

 
 

Figure 1. Proposed simulation setup description 

 

 

3. PERFORMANCE ANALYSIS WITH DISCUSSIONS 

We have outlined the basic fiber bragg grating (FBG) apodization function (AF) effects on the 

filtered optical AS. We have also studied the max optical acoustic power variations (PVs) after acousto optic 

filter with the spectral wavelength variations. Various FBG apodization functions are studied such as the 

uniform, Gaussian, and Tanh. We have examined the max optical acoustic PVs after various apodization 
FBG functions with the spectral wavelength variations. We have simulated the max AS power amplitude 

after the electrical combiner based various apodization FBG functions. The max optical AS after FBG is 

simulated also with various FBG lengths for various FBG apodization functions at the central wavelength of 

1.55 μm. The max electrical power after power combiner unit is demonstrated with different FBG lengths for 

various FBG apodization functions at the central frequency of 193.1 THz. list of variables in this proposed 

study as shown in Table 1.  

Figure 2 clarifies the max optical acoustic PVs after acousto optic filter with the spectral wavelength 

variations. Where max AS power is 0.5205 dBm and min noise acoustic power (MNAP) is -104.787 dBm. 

The max optical acoustic PVs after uniform apodization FBG with the spectral wavelength variations is 

reported in Figure 3. Where the max AS power is -0.206788 dBm and MNAP is -104.752 dBm. Figure 4 

shows the max optical acoustic PVs after Gaussian apodization FBG with the spectral wavelength variations. 
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Where the max AS power is 0.318 dBm and MNAP is -104.777 dBm. The max optical acoustic power 

variations after Tanh apodization FBG with the spectral wavelength variations is reported in Figure 5. Where 

the max AS power is -0.17823 dBm and MNAP is -104.753 dBm. 

 

 

Table 1. List of variables in this proposed study 
Parameters Values/Units 

WDM transmitter 

Frequency 193.1 THz 

Power 0 dBm 

Frequency spacing 100 GHz 

Extinction ratio 10 dB 

Acousto opticl filter 

Bandwidth 100 GHz 

Insertion loss 0 dB 

Laser measured 

Frequency 193.1 THz 

Power 10 dBm 

FGB Device 

Frequency 193.1 THz 

Length 2 mm 

Effective index 1.45 

Transimpedance Amplifier 

Voltage gain 27.78 dB 

Noise figure 6 dB 
 

 

 

 
 

Figure 2. Max optical acoustic power variations after acousto optic filter with the spectral 

wavelength variations 

 

 

 
 

Figure 3. Max optical acoustic power variations after uniform apodization FBG with the spectral 

wavelength variations 
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Figure 4. Max optical acoustic power variations after Gaussian apodization FBG with the spectral 
wavelength variations 

 

 

Figure 6 demonstrates the max optical acoustic power variations (OAPVs) after Acousto Optic filter 

with the time variations. Where the max acoustic power is 0.00105 W and MNAP is -50 μW. The max 

OAPVs after uniform apodization FBG with the time variations is reported in Figure 7. Where the max 

acoustic power is 0.00092 W and MNAP is -43.85 μW. Besides the max OAPVs after Gaussian apodization 

FBG with the time variations is clarified in Figure 8. Where the max acoustic power is 0.001 W and MNAP 

is -47.93 μW. Figure 9 outlines the max OAPVs after Tanh apodization FBG with the time variations. Where 

the max acoustic power is 0.00095 W and min acoustic power is -44.05 μW. Figure 10 shows the max AS 

power amplitude after the electrical combiner based Gaussian apodization FBG. The max AS amplitude is 

1.54958 a.u. and min AS amplitude is -0.276726 a.u. The total electrical power after the electrical combiner 
based Gaussian apodization FBG is demonstrated in Figure 11. Where the total AS power is 806.165 mW. 

 

 

 
 

Figure 5. Max optical acoustic power variations after Tanh apodization FBG with the spectral wavelength 

variations 

 

 

Figure 12 clarifies the max electrical power variations with the spectral frequency variations after 

the electrical combiner based Gaussian apodization FBG. Where the max AS power is 33.2231 dBm and min 

MNAP is -106.344 dBm. Figure 13 clarifies the max optical AS after FBG with FBG length for various FBG 
AF at 1.55 μm center of wavelength. The max optical AS decreases with the increase of FBG device length. 

The optimum optical AS is achieved at FBG length of 2 mm for various FBG AF. Gaussian AF reported 

better performance than other apodization FBG AF. Figure 14 illustrates the max AS power amplitude after 

power combiner unit with FBG length for various FBG AF at the central wavelength of 1.55 μm. The max 

AS power amplitude can be enhanced with FBG length of 2 mm for various FBG AF. Gaussian FBG AF has 

outlined better performance than other FBG AF.  
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Figure 6. Max optical acoustic power variations after 

Acousto Optic filter with the time variations 

 

Figure 7. Max optical acoustic power variations after 

uniform apodization FBG with the time variations 

 
 

  
 

Figure 8. Max optical acoustic power variations after 

Gaussian apodization FBG with the time variations 

 

Figure 9. Max optical acoustic power variations 

after Tanh apodization FBG with the time variations 

 

 

 
 

Figure 10. Max AS power amplitude after the electrical combiner based Gaussian apodization FBG 
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Figure 11. Total electrical power after the electrical combiner based Gaussian apodization FBG 

 

 

 
 

Figure 12. Max electrical power variations with the spectral frequency variations after the electrical combiner 

based Gaussian apodization FBG 

 

 

 
 

Figure 13. Max optical AS after FBG with FBG length for various FBG apodization functions at the central 

wavelength of 1.55 μm 

 

 

 
 

Figure 14. Max AS power amplitude after power combiner unit with FBG length for various FBG 

apodization functions at the central wavelength of 1.55 μm 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Basic FBG apodization functions effects on the filtered optical acoustic signal (Mahmoud M. A. Eid) 

293 

Figure 15 clarifies the total AS power after power combiner unit with FBG length for various FBG 

AF at the central wavelength of 1.55 μm. The total AS power amplitude can be enhanced with FBG length of 

2 mm for various FBG AF. Gaussian FBG AF has outlined better performance than other FBG AF. Figure 16 

clarifies the max electrical power after power combiner unit with FBG length for various FBG AF at the 

central frequency of 193.1 THz. The max electrical power can be enhanced with FBG length of 2 mm for 

various FBG AF. Gaussian FBG AF has outlined better performance than other FBG AF.  

 

 

 
 

Figure 15. Total electrical power after power combiner unit with FBG length for various FBG apodization 

functions 

 

 

 
 

Figure 16. Max electrical power after power combiner unit with FBG length for various FBG apodization 
functions at the central frequency of 193.1 THz 

 

 
 

4. CONCLUSION 

 We have been simulated the basic FBG apodization functions effects on the filtered optical AS. 

Max AS power amplitude after power combiner unit with FBG length for various FBG AF at the central 
wavelength of 1.55 μm. The max AS power amplitude can be enhanced with FBG length of 2 mm for various 

FBG AF. Gaussian FBG apodization function has outlined better performance than other FBG apodization 

functions. The total AS power amplitude can be enhanced with FBG length of 2 mm for various FBG AF. 

Gaussian FBG AF has outlined better performance than other FBG apodization functions THz. The max 

electrical power can be enhanced with FBG length of 2 mm for various FBG AF. Gaussian FBG AF has 

outlined better performance than other FBG AF. The AS power amplitude and optimized power at FBG 

length of 2 mm and at Gaussian FBG apodization function.  
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