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1. INTRODUCTION BACKGROUND

Optical communication system should satisfy the following basic specifications such as
determination of transmission type (analog/digital); achieving the system fidelity (higher SNR/lower BER);
larger transmission bandwidth (BW); longer repeater spacing (span); less cost of system installation;
reliability (error-free transmission); less cost of system maintenance; and less of complexity [1-15]. While
selecting a photodetector, the following factors are considered such as minimum optical power that must fall
on photodiode to satisfy BER at specified data rate; less complexity of circuit; less cost of design; and less
bias requirements [16-35]. Metal oxide technology is used to reduce the rise, fall and delay times. Metal
oxide technology can be employed to achieve high speed performance, minimize transistor dimensions, so
large transistors can be integrated on achip. The progress of transistors integrated on a single chip versus
technology year can be studied in these researches. Bipolar complentary semiconductor transistors
technologies are integrated with metal oxide technology to overcome the time delay and consequently to
increase the flow rates. Next step in system designing is choosing a proper optical source, the important
factors are less signal dispersion; higher data rate; longer transmission distance; less cost; efficient optical
power coupling; and less circuit complexity [36-58].
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2. MODEL DESCRIPTION

The setup model is illustrated in Figure 1. WDM transmitter has 100 GHz frequency spacing, power
of 0 dBm, modulation line coding of non return to zero and flow rate of 40 Gbps. WDM transmitter generates
the light signal with the previous technical specifications. The light signal can be modulated through acousto
optical filter to delete the unwanted noise from the base band. The filtered AS is forward to FGB device to
smooth the filtered signal. Fiber bragg grating (FBG) has input frequency of 193.1 THz. The Laser measured
has 193.1 THz frequency of and input power of 10 dBm. SGs generate bits stream and it is digitalized coding
through NRZ line coding modulation scheme. The encoded light signal from laser measured is directed to the
ideal circulator. Ideal circulator has two inputs, one is the filtered AS through FBG devices and another is the
encoded light signal. The output of the ideal circulator is directed to APD photodetectors.

The basic function of APD photodetectors is electrical signal detection. The signal is amplified
through transimpedance amplifiers. Transimpedance amplifiers have voltage gain of 600 ochm and noise
figure of 6 dB. The two signals with amplification are combined together in order to be measured in the time
and spectral domains.
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Figure 1. Proposed simulation setup description

3. PERFORMANCE ANALYSIS WITH DISCUSSIONS

We have outlined the basic fiber bragg grating (FBG) apodization function (AF) effects on the
filtered optical AS. We have also studied the max optical acoustic power variations (PVs) after acousto optic
filter with the spectral wavelength variations. Various FBG apodization functions are studied such as the
uniform, Gaussian, and Tanh. We have examined the max optical acoustic PVs after various apodization
FBG functions with the spectral wavelength variations. We have simulated the max AS power amplitude
after the electrical combiner based various apodization FBG functions. The max optical AS after FBG is
simulated also with various FBG lengths for various FBG apodization functions at the central wavelength of
1.55 pm. The max electrical power after power combiner unit is demonstrated with different FBG lengths for
various FBG apodization functions at the central frequency of 193.1 THz. list of variables in this proposed
study as shown in Table 1.

Figure 2 clarifies the max optical acoustic PVs after acousto optic filter with the spectral wavelength
variations. Where max AS power is 0.5205 dBm and min noise acoustic power (MNAP) is -104.787 dBm.
The max optical acoustic PVs after uniform apodization FBG with the spectral wavelength variations is
reported in Figure 3. Where the max AS power is -0.206788 dBm and MNAP is -104.752 dBm. Figure 4
shows the max optical acoustic PVs after Gaussian apodization FBG with the spectral wavelength variations.
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Where the max AS power is 0.318 dBm and MNAP is -104.777 dBm. The max optical acoustic power
variations after Tanh apodization FBG with the spectral wavelength variations is reported in Figure 5. Where

the max AS power is -0.17823 dBm and MNAP is

-104.753 dBm.

Table 1. List of variables in this proposed study

Parameters Values/Units
WDM transmitter
Frequency 193.1 THz
Power 0dBm
Frequency spacing 100 GHz
Extinction ratio 10 dB
Acousto opticl filter
Bandwidth 100 GHz
Insertion loss 0dB
Laser measured
Frequency 193.1 THz
Power 10 dBm
FGB Device
Frequency 193.1 THz
Length 2mm
Effective index 1.45
Transimpedance Amplifier
Voltage gain 27.78 dB
Noise figure 6dB
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Figure 2. Max optical acoustic power variations after acousto optic filter with the spectral

wavelength variations

"i Optical Spectrum Analyzer_1

Dl Gliok On Objects 1o open properties, Move Objects with Mouse Drag

TESE 1SS 1 ss2p 1 sE3g
Wavelenglh {m}

1854 4

Powsr { Fower &} Fower 1 _J

Figure 3. Max optical acoustic power variations after uniform apodization FBG with the spectral

wavelength variations

Signal lndes; [0 |

At 5wt
vy mimngth
Unite; [m -
I+ Automatio ranges
L'untur:l' S5255m-008  m
Stark: |1 5ASFe-005 I
Sl || BEEAEe.008
Amplitiace
Units: [diim -
¥ Autamatic rangs
Maw [0GZ0GEZ AR
Mir: | 104.787 dBm

[ Assolution Bandwidth

Fos: [0 rm

I Invart Colars

Signal lndes: |0 =]

Auta Sat |

o mvmlmngth

Unitz: | b

I Automatic range

Cantar: [1 GG e-00E
Start; [T 0407e 006 | m
Stop; |1 566366006 m

Armnplitcs

Writz: | dbim b

I Automatic range
Rl ||| R AR 4B

(2158 |IHI/'-' AR

™ Fezolution Bandwidth
R 001 ]

I Irweit Colors

Basic FBG apodization functions effects on the filtered optical acoustic signal (Mahmoud M. A. Eid)



290 a ISSN: 2502-4752

= . [0 z
=] Optical Spectrum Analyzer_1 Sianal Indle: | =
Db Click G0 Objects o open properties. Move Objects wilh Mouse Drag Auto Set |

whavalaralh

Lhnite: -

¥ automatioo ranos
i cu,,l.,,.||'.'.-'.:.-.uu. 0w

=

Gtarty [159970 0056 m
Siep: [TEEGEEROOE m

Amplituces
Units: [dBm =

¥ Automatic rangs

PamuridBr)
5 i

e |" 11 H dbm

BT Min [108.777 B
M [ Fmzalation Bandwidth
= LAk TR

Flmz: |""I nm

1.85 0 1TEST W 1ASRE 1SS3p 1.884p
Visvalength {m I irvmrt Colars
Power A Power X Power Y

Figure 4. Max optical acoustic power variations after Gaussian apodization FBG with the spectral
wavelength variations

Figure 6 demonstrates the max optical acoustic power variations (OAPVSs) after Acousto Optic filter
with the time variations. Where the max acoustic power is 0.00105 W and MNAP is -50 uW. The max
OAPVs after uniform apodization FBG with the time variations is reported in Figure 7. Where the max
acoustic power is 0.00092 W and MNAP is -43.85 uW. Besides the max OAPVs after Gaussian apodization
FBG with the time variations is clarified in Figure 8. Where the max acoustic power is 0.001 W and MNAP
is -47.93 uW. Figure 9 outlines the max OAPVs after Tanh apodization FBG with the time variations. Where
the max acoustic power is 0.00095 W and min acoustic power is -44.05 uW. Figure 10 shows the max AS
power amplitude after the electrical combiner based Gaussian apodization FBG. The max AS amplitude is
1.54958 a.u. and min AS amplitude is -0.276726 a.u. The total electrical power after the electrical combiner
based Gaussian apodization FBG is demonstrated in Figure 11. Where the total AS power is 806.165 mW.
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Figure 5. Max optical acoustic power variations after Tanh apodization FBG with the spectral wavelength
variations

Figure 12 clarifies the max electrical power variations with the spectral frequency variations after
the electrical combiner based Gaussian apodization FBG. Where the max AS power is 33.2231 dBm and min
MNAP is -106.344 dBm. Figure 13 clarifies the max optical AS after FBG with FBG length for various FBG
AF at 1.55 pm center of wavelength. The max optical AS decreases with the increase of FBG device length.
The optimum optical AS is achieved at FBG length of 2 mm for various FBG AF. Gaussian AF reported
better performance than other apodization FBG AF. Figure 14 illustrates the max AS power amplitude after
power combiner unit with FBG length for various FBG AF at the central wavelength of 1.55 um. The max
AS power amplitude can be enhanced with FBG length of 2 mm for various FBG AF. Gaussian FBG AF has
outlined better performance than other FBG AF.
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Figure 9. Max optical acoustic power variations
after Tanh apodization FBG with the time variations
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Figure 10. Max AS power amplitude after the electrical combiner based Gaussian apodization FBG
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Figure 15 clarifies the total AS power after power combiner unit with FBG length for various FBG
AF at the central wavelength of 1.55 pm. The total AS power amplitude can be enhanced with FBG length of
2 mm for various FBG AF. Gaussian FBG AF has outlined better performance than other FBG AF. Figure 16
clarifies the max electrical power after power combiner unit with FBG length for various FBG AF at the
central frequency of 193.1 THz. The max electrical power can be enhanced with FBG length of 2 mm for
various FBG AF. Gaussian FBG AF has outlined better performance than other FBG AF.
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Figure 15. Total electrical power after power combiner unit with FBG length for various FBG apodization
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Figure 16. Max electrical power after power combiner unit with FBG length for various FBG apodization
functions at the central frequency of 193.1 THz

4.,  CONCLUSION

We have been simulated the basic FBG apodization functions effects on the filtered optical AS.
Max AS power amplitude after power combiner unit with FBG length for various FBG AF at the central
wavelength of 1.55 pm. The max AS power amplitude can be enhanced with FBG length of 2 mm for various
FBG AF. Gaussian FBG apodization function has outlined better performance than other FBG apodization
functions. The total AS power amplitude can be enhanced with FBG length of 2 mm for various FBG AF.
Gaussian FBG AF has outlined better performance than other FBG apodization functions THz. The max
electrical power can be enhanced with FBG length of 2 mm for various FBG AF. Gaussian FBG AF has
outlined better performance than other FBG AF. The AS power amplitude and optimized power at FBG
length of 2 mm and at Gaussian FBG apodization function.
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