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 A new multi-stable system with a double-scroll chaotic attractor is developed 
in this paper. Signal plots are simulated using MATLAB and multi-stability 
is established by showing two different coexisting double-scroll chaotic 
attractors for different states and same set of parameters. Using integral 
sliding control, synchronized chaotic attractors are achieved between drive-
response chaotic attractors. A MultiSim circuit is designed for the new 
chaotic attractor, which is useful for practical engineering realizations. 
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1. INTRODUCTION  

Chaotic dynamical models with double-scroll attractors have been analyzed in the science literature 

[1], [2]. These attractors resemble like butterfly wings due to their double-scroll shape. Especially, the 

dynamical plants exhibiting multi-stability and cohappening chaotic attractors have been studied [3], [4]. 

Engineering fields have many utilizations of chaotic attractors [2]. Some common utilizations are enlisted 

such as oscillations [5], [6], vibrations [7], neuron models [8], [9], control and memristor models [10]-[12], 

mechanical attractors [13], [14].  

In the control literature, there are many control techniques available for the control and 

synchronization of chaotic systems [2]. Bahoo and Poria [13] used active control method for food chain 

model. Mustafa et al. [14] used chaos-enhanced cuckoo search for economic dispatch with valve point 
effects. Vaidyanathan and Rasappan [15] used active control for the hybrid synchronization of hyperchaotic 

Qi and Lü systems. Vaidyanathan [16] used active control for stabilizing the state trajectories of a new 

hyperchaotic system with three quadratic nonlinearities. Medhaffar et al. [17] investigated the stabilization of 

unstable periodic orbits of continuous time chaotic systems using adaptive fuzzy controllers. Boubellouta and 

https://creativecommons.org/licenses/by-sa/4.0/
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Boulkroune [18] investigated the problem of chaos synchronization based on fractional-order intelligent 

sliding-mode control approach for a class of fractional-order chaotic optical systems with unknown dynamics 

and disturbances. Vaidyanathan [19] studied the global chaos synchronization of Tokamak chaotic systems 

with symmetric and magnetically confined plasma. Khan and Kumar [20] studied the T–S fuzzy observed 

based design and synchronization of chaotic and hyper-chaotic dynamical systems. 

The novelty of this work is the modelling a new double-scroll chaotic attractor with interesting 

dynamic properties. The signal plots, dynamical properties and multi-stability with cohappening chaotic 

attractors are reported for the new chaotic attractor. For practical realizations, an electronic circuit is 
immensely useful after the modelling of a new chaotic attractor [21]-[26]. A MultiSim electronic circuit 

model of the new chaotic attractor is carried out and a good match between the MultiSim circuit outputs and 

the MATLAB signal plots has been found.  

 

 

2. A NEW DOUBLE-SCROLL MULTI-STABLE CHAOTIC ATTRACTOR  

We first give the dynamics of a new system described as follows: 
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We note that ( , , , )     is the parameter and 1 2 3( , , )P p p p is the phase vector. 

Using Wolf’s approach [27], we will show that the model (1) will exhibit a chaotic attractor for 

 
( , , , ) (40,26,5,0.2).       (2) 

 

For MATLAB simulations, the initial phase vector is chosen as (0) (0.1,0.3,0.2).P   

Then the Lyapunov indices of (1) are estimated using Wolf’s approach [27] as follows: 

 

1 2 33.9125,  0,  22.9125LE LE LE     (3) 

 

Using (3), it is concluded that the model (1) has chaoticity and dissipativity. 

The double-scroll attractor of the model (1) is simulated in various planes in Figure 1.  

The balance points of the new double-scroll attractor (1) for ( , , , ) (40,26,5,0.2)     are 

calculated as below: 
 

0 1 2
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 (4) 

 

By finding spectral values of the linearization matrices of the double-scroll system (1), it can be 

ascertained that the balance point 0P is a saddle point, and 1 2,P P are saddle-foci.  

We next demonstrate that the new double-scroll system (1) has cohappening chaotic attractors. 

When selecting ( , , , ) (40,26,5,0.2),      and the initial phase vectors 0 (0.1,0.3,0.2)P   

(blue) and 0 ( 0.5, 0.3, 0.5)Q      (red), the new double-scroll chaotic attractor (1) depicts cohappening 

chaotic attractor (blue) and chaotic attractor (red) as plotted in Figure 2. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 1. MATLAB phase plots showing double-scroll chaotic attractor of the model (1) 

 

 

 
(a) 

 
(b) 

 

Figure 2. Multi-stability of the new double-scroll attractor (1): Cohappening chaotic attractors 

 

 

3. INTEGRAL SLIDING CONTROL DESIGN FOR THE PHASE SYNCHRONIZATION OF 

DOUBLE-SCROLL CHAOTIC ATTRACTORS 
For the phase synchronization of double-scroll chaotic attractor, we consider a pair of drive-response 

chaotic attractors listed as follows. 
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The phase synchronization error between (5) and (6) can be defined as below: 
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A simple calculation pinpoints the dynamics of the phase synchronization error as below: 
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We define the integral sliding surface associated with each error variable as below: 
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Taking time-derivative of all the of (9), we obtain as below: 
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We take 1 2 3, ,   as positive constants. 

Next, we set the dynamics of the sliding variables as follows: 

 

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

sgn( )

sgn( )

sgn( )

z z z

z z z

z z z

 

 

 

  


  
   

 (11) 

 

From (10) and (11), we deduce the following: 
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Combining (8) and (12), we obtain the following: 
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The integral sliding controls are deduced from (13) as below: 
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Theorem 1. The integral sliding control law defined by (14) achieves the global phase chaos 

synchronization between the new double-scroll attractors (5) and (6), where the constants , , ,i i i  

( 1,2,3)i   are all positive. 

Proof. First, as a positive definite Liapunov function candidate, we choose the function 

 

 2 2 2

1 2 3 1 2 3( , , ) 0.5W z z z z z z    (15) 

 

We calculate the time-derivative of W as below: 

 

1 1 2 2 3 3W z z z z z z    (16) 

 

Combining (11) and (16), we get  

 

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3[ sgn( ) ] [ sgn( ) ] [ sgn( ) ]W z z z z z z z z z               (17) 

 

Simplifying (17), we obtain 

 
2 2 2

1 1 1 1 2 2 2 2 3 3 3 3W z z z z z z             (18) 

 

Since 1 2 3, , 0     and 1 2 3, , 0,     we see that W  is a negative definite function. 

From Liapunov stability theory [28], we find  1 2 3( ( ), ( ), ( )) (0,0,0)z t z t z t   as  .t   

Hence, we observe that 1 2 3( ( ), ( ), ( )) (0,0,0)t t t      as  .t    

For MATLAB simulations, we assume the parameter vector as in the chaotic case, viz. 

( , , , ) (40,26,5,0.2).      We also assume the gains as 0.1,i  0.1,i   and 20i    for 1,2,3.i     

The initial state of the drive system (5) is picked as  1 2 3( (0), (0), (0)) (3, 0.5,2)p p p     and the 

initial state of the response system (6) is picked as  1 2 3( (0), (0), (0)) (1.5,0.9,4.2).q q q   

Figure 3 shows the phase synchronization error between systems (5) and (6). 

 

 

 
 

Figure 3. The phase synchronization error between the systems (5) and (6)  
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4. MULTISIM CIRCUIT DESIGN OF THE NEW DOUBLE-SCROLL ATTRACTOR 
The MultiSim electronic circuit of the new double-scroll attractor (1) is realized by using off-the-

shelf components such as resistors, capacitors, operational amplifiers and analog multipliers. The phases p1, 

p2, p3 of the double-scroll attractor (1) are the voltages across the capacitors C1, C2 and C3, respectively. The 

electronic circuit of the new double-scroll attractor is realized in MultiSim by 19 resistors, 8 operational 

amplifiers (TL082CD), 3 multipliers (AD633JN), 2 diodes (1N4148) and 3 capacitors. By the use of 
Kirchhoff’s circuit laws into the circuit in Figure 4, its circuital equations are obtained as (19): 
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3 1 2 3 2
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1 1 1
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1 1

10
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| |
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
  




 



  


 (19) 

 

We selected R1 = R2 = 10 kΩ, R3 = R5 = R6 = 40 kΩ, R4 = 15.384 kΩ, R7 = 80 kΩ, R8 = 2 MΩ, R9 = 

R10 = R11 = R12 = R13  = R14  = R15  = R16  = R17  = R18 = R19 = 100 kΩ, C1 = C2 = C3 = 3.2 nF.   

Figures 5-7 with MultiSim outputs of the double-scroll chaotic attractor (19) exhibit a good match 

with the MATLAB outputs of the double-scroll chaotic attractor (1) shown in Figure 1.  

 

 

 
 

 Figure 4. The circuit schematic of the double-scroll chaotic attractor (19) (Note:  p1, p2, p3 = x1, x2, x3) 
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Figure 5. MultiSim output of the double-scroll circuit (19) in 1 2( , )p p  plane  

 

 

 
 

 Figure 6. MultiSim output of the double-scroll circuit (19) in 2 3( , )p p  plane  

 

 

 
 

Figure 7. MultiSim output of the chaotic circuit (19) in 1 3( , )p p  plane  
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5. CONCLUSION 

In this paper, a new multi-stable system with a double-scroll chaotic attractor is developed and 

detailed. Signal plots were simulated using MATLAB and multi-stability was established by showing two 

different coexisting double-scroll chaotic attractors for different states and same set of parameters. Using 

integral sliding control, synchronized chaotic attractors are achieved between drive-response chaotic 

attractors. A MultiSim electronic circuit was designed for the new double-scroll attractor, which is useful for 

practical engineering realizations. 
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