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Abstract 
Parameter choice is crucial to regularization-based image deblurring. In this paper, a Monte Carlo 

method is used to approximate the optimal regularization parameter in the sense of Stein’s unbiased risk 
estimate (SURE) which has been applied to image deblurring. The proposed algorithm is suitable for the 
exact deblurring functions as well as those of not being expressed analytically. We justify our claims by 
presenting experimental results for SURE-based optimization with two different regularization algorithms of 
Tikhonov and total variation regularization. Experiment results show the validity of the proposed algorithm, 
which has similar performance with the minimum MSE. 
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1. Introduction 

Image deblurring is very common in image processing field. However, image deblurring 
is a ill-posed inverse problem. The concept of ill-posed problems goes back to Hadamard in the 
beginning of this century [1]. Hadamard essentially defined a problem to be ill-posed if the 
solution is not unique or it is not continuous function of the data, if an arbitrarily small perturation 
of the data can cause an arbitrarily large perturbation of the solution. A popular strategy for 
solving inverse problems is to use regularization techniques. Regularization method is a useful 
strategy which can stabilize the problem and to obtain a useful and stable solution. However, 
when applying this method, the user is faced with the difficult task of adjusting regularization 
parameter to obtain best performance.  

Generally, the effect of reconstructed image is measured by minimizing mean squared 
error (MSE), as we all know, the MSE depends on the original signal which is generally is 
unavailable or unknown a priori, a practical approach is to replace the true MSE by some 
estimate in the sense of Stein’s unbiased risk estimate (SURE), which depends on the given 
data and provides a mean for unbiased risk estimate of the true MSE [2, 3]. In recent years, the 
SURE criterion has been employed in variety of denosing problems for choosing regularization 
parameters, in that case of denosing algorithms are not being expressed analytically. It has 
been demonstrated that Monte Carlo method is practicable in calculation of SURE [4]. However, 
its application is not limited to denosing case. In this paper, we extend the SURE method to a 
much broader class of problems. 

This paper is organized as follows. In section 2, we introduce the image degraded 
model and regularization method. Section 3 describes gradient descent method and image 
reconstruction by an iterative algorithm based on Tikhonov and total variation (TV) 
regularization. In section 4, we extend Monte-Carlo SURE technique to image deblurring 
problems. In section 5, we present experimental results and demonstrate numerically that 
SURE, computed using the Monte-Carlo strategy, faithfully approach the true MSE curve. 
Finally the conclusion is given in section 6. 
 
 
2. Problem  Formulation 

It is well known that signals are inevitably degraded during acquisition, transmission and 
storage process. In most cases, there are two kinds of degraded factors, one is the deterministic 
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factors, such as the defects of camera itself, the defocus blur, the motion blur, and the 
atmospheric disturbances, which are mainly caused by image acquisition system, the other is 
random factors, such as photoelectric noise, channel noise and so on. In general, we assume 
the noise follows a certain probability distribution, such as Gaussian distribution. 

Let 21 LLRX   be the ideal discrete signal of a continuous scene. 21 MMRY   is the 
observed degraded signal. 2211 M,LML   are the sizes of the original and observed signal, 

respectively. The degraded model of the general signal model is given by: 
 

EHXY                                                                       (1) 
 

where C)N(0,~E  is zero-mean white Gaussian noise with a variance of C, H is deterministic 

part of degraded model, which is assumed as a linear operator, and represents any kinds of 
distortion, blurring and downsample in the process of image acquisition. 

In the variational framework [5, 6], the reconstruction signal is obtained in general by 
minimizing a cost functional of: 
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where
2

denotes the Euclidean norm, 2

2
HXY

2

1
 is the data fidelity term that measures the 

consistency of X to the given data Y, and  XR  is a suitable regularization function that often 

penalized the lack of smoothness in X. The determination of regularization parameter λ  is an 
important task and the main goal in this work is to optimize λ  given Y [6-9]. 
 
 
3. Image Reconstruction based on Regularization 

When the linear operator H is a blur or convolution operator, reconstruction the original 
signal X from the observation is called deconvolution or deblurring. Regularization method is 
crucial to image deblurring processing. There are two issues to be considered in regularization, 
the type of regularization term and the selection of regularization parameter, they all have close 
connection with the effect of the restored image. In this paper, we mainly discuss two 
regularization methods: Tikhonov regularization and TV regularization  

 
3.1. Tikhonov Regularization 

Generally we can choose regularization function as    dxdyR   XX  , and let   2ss 

, where X is the gradient of X, then we have   dxdyR
2

Ω
  XX , which is Tikhonov 

regularization [10, 11]. 
 

  dxdyλYJ
2

  XHX
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1
X
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2
                                                       (3) 

 
The Euler-Lagrange equation of (3) is: 
 

YHXHXH TT  2                                                                (4) 
 

Where   is the Laplacian operator. 
          

3.2. Total Variation (TV) Regularization    
When   ss   , then regularization function becomes   dxdyR

Ω
  XX , this is total 

variation (TV) regularization [12].  
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  dxdyλYJ   XHX
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                                                     (5) 

 
The Euler-Lagrange equation of (5) is: 
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If 0X , the diffusion coefficient 





 22

11

yx XXX

. That means, in the flat region 

of image, adding a great smoothing effect will lead to a bad staircase effect. In order to 
overcome this phenomenon, we introduce a parameter  , so: 
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And the corresponding Euler-Lagrange equation is: 
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Where 222   yx uuu . 

 
3.3. Gradient Descent Method 

   Large-scale equation problem is inevitable in image restoration processing. The 
dimension of some matrix is too large, for example, if the size of a given image is 256256, and 
then the size of operator H is 25622562. Therefore, some direct methods such as Gauss 
elimination method and LU decomposition can not be applied in practice because large matrix 
can not be stored in our computer. The iterative algorithms can avoid the decomposition of 
matrix and the amount of storage is less than that of direct methods. In this paper, we restore 
image by gradient descent method which is a type of iterative method. Gradient descent is also 
known as steepest descent method. In this iterative algorithm, the inverse operation of H can be 
avoided and some prior knowledge of the solution can be effectively combined in the iterative 
process. 

A simple form of the gradient descent method is given by: 
 

 kkk Jτ XXX 1                                                                   (9) 

 
Where k is the number of iteration.  is the iterative step, which is a small enough to ensure the 

convergence of iterative algorithm. kX is the estimate of X  after k times iterative calculation 

and  kJ X  is the  negative gradient of  XJ  at kX . 
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For the regularization function (2), the negative gradient is given by: 
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Where  XL is the differential operator of  XR , iterative algorithm is as follows: 
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4. Regularization Parameter Determination 
4.1. Choosing Regurarization Parameter Based On The Minimum SURE 

For the degraded model, the probability density of the observed Y can be expressed as 
the exponential distribution [2]. 

 

        XYXYXY gexpbf T                                                      (13) 
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sufficient statistics for estimating X is given by )φ(Yu  . Therefore, any reasonable of Y will be 

a function only of u. More specifically, from the Rao-Blackwell theorem [14], it follows that if λX̂

is an estimate of X which is not a function only of u, then the estimate )uXE( λ
ˆ  has lesser or 

equal MSE than that of  uX λλ hˆ , therefore, in the sequel, we only consider methods that 

depend on the data via u. Where  uλh is a function of u that depends on the observations Y and 

the subscript  denotes that the estimation is related to regularization parameters. For the 
estimate  uX λλ hˆ , MSE is defined as: 
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The sufficient statistics u lies in the range space )(HT , so  uX λλ hˆ  also belongs 

to this space. Denote by   HHHHP TT 
 the orthogonal projection onto , where H is rank-

deficient. Then, 
 

 2222

λ

2

EEEEE P)X(IXPPXXP)(IP)X(IXPPXXX λ 






 







 







 







  ˆˆˆˆ


            (16) 

 

If 
λX̂  lies in the space , then 0ˆ  λXP)(I .and P)X(I  is constant and independent 

of 
λX̂ . Therefore, in this case, it is sufficient to obtain the estimate of the first term for optimizing

λX̂ . 

Next we consider the specific Gaussian distribution expression. Suppose H has the 

singular value decomposition TQUH  for some unitary matrices U and Q. Let H has rank r 

so that   is a mn  diagonal matrix whose the first r diagonal elements are equal to 02 i . 

Projection matrix is TVVP  , where V equals to the first r columns of Q, and let XVX' T . The 

sufficient statistic for estimating 'X  is uVYCHVu' T1TT   , and 'u is a Gaussian random 

vector with a mean 'u and a covariance HVCHVC' 1TT  . Using the SVD decomposition of H, 
we have: 
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Where Λ is a rr  diagonal matrix with diagonal elements 0σ 2
i   and r[A] is the rr   top-left 

principle block of size r of the matrix A. Since 0C  , C' is invertible. Therefore: 
 

  'T Xgu'X'u'X'|u'  expqf )()(                                                 (18) 

 



                       e-ISSN: 2087-278X 

TELKOMNIKA  Vol. 11, No. 6, June 2013 :  3242 – 3250 

3246

Where 'u  is the sufficient statistic of 
'X , )|( X'u'f  is exponential distribution, 
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Since )(Vuu)X 'h(h λλλ ˆ  and )X'|(u'f  is exponential families distribution. Let 
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So the unbiased estimate of the MSE  XXE ˆPP   can be obtained by [2]: 
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Where YCHH)C(HX 1T1T ML

ˆ is the maximum likelihood  estimation, and the )( denotes the 

Moore-Penrose pseudo inverse.  
 
4.2. Monte-Carlo Realization Of The Unbiased Risk Estimation 
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Theorem 1 [3]: let Nb R  be a zero-mean i.i.d. random vector. Assume (u)h  has the 
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Proof: The second-order Taylor expansion of )( bu εh  can be written as: 
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Where )(u
h

J  is the Jacobian matrix of (u)h  evaluated at Y and 
he represents the error 

vector. In this case, the components are bounded in the expectation sense, then: 
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5. Experimental Results 
In this section, the standard cameraman and peppers images with size of 256×256 are 

adopted as test images. In degradation, 3×3 Gaussian kernel with a variance of 1 is used to blur 
the original images, and then the white Gaussian noise with a standard deviation of 0.1 is added 
to the blurred image.  

Tikhonov regularization and TV regularization are adopted in deblurring algorithm. 
Figure 1(a) and Figure 3(a) are the original images; Figure 1(b) and Figure 3(b) are the 
degraded images; Figure 1(c) and Figure 3(c) are the restored images using Tikhonov 
regularization with optimized parameters; Figure 1(d) and Figure 3(d) are the restored images 
using TV regularization with optimized parameters. From the visual perspective, the image 
restored by Tikhonov regularization can not preserve the details of the edges of image, while 
the image restored by TV regularization is much better in keeping details of image, and the 
edge is more visible compared to Tikhonov regularization. The peak signal-to-noise ratio 
(PSNR) values are listed in Table 1 where the output PSNR based on true MSE and Monte-
Carlo SURE respectively are given and the PSNR based on these method are similar. Figure 2 
and Figure 4 are the SURE and MSE curves of cameraman and peppers respectively. We use 
Monte-Carlo SURE to select regularization parameter instead of MSE which has been 
described in section 4. It can be seen that the curves of SURE and MSE obtained by two 
reconstruction algorithms are very close. Now we compare the regularization parameter λ 
selected by SURE and MSE. For cameraman image in Tikhonov regularization, MSE and SURE 
reach the minimum almost at the same point 26.0 SUREMSE  . In TV regularization, 

036.0 SUREMSE  . While for peppers image, the parameter λ selected by MSE and SURE has 

a small gap, when the Tikhonov regularization is used, the optimum regularization parameters 
are 40.0MSE  and 35.0SURE . For the TV regularization, the optimum regularization 

parameters are 046.0MSE  and 041.0SURE  respectively. From these results, we can see the 

effectiveness of the Monte-Carlo SURE algorithm and it is a good way to select the 
regularization parameter in image deblurring. 
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6. Conclusion 
In this paper, we developed the unbiased estimate of the MSE in image deblurring by 

extending the SURE method, which is used to choose the optimal regularization parameter. 
Computation and application of SURE need to evaluate the trace, however, the computation of 
the trace may turn out to be nontrivial, especially when the deblurring reconstruction algorithm 
does not have explicit analytical form. In this paper, we use the Monte-Carlo method to solve 
this problem. The contribution of our work is that the Monte-Carlo SURE method is extended to 
the application of image debluuing. The advantage of this method for selecting parameters is 
that the MSE can be estimated purely from the measured data without need the knowledge of 
original image. Experiment results show that the optimal parameter obtained by Monte-Carlo 
SURE is perfectly agreed with the true minimum value of MSE. 
 
 

 
Figure 1. Visual Comparison of SURE-optimized Deblurred Results for Cameraman. (a) 

Original image. (b) Degraded image.  (c) Restored image by using Tikhobov regularization. 
(d) Restored image by using TV regularization. 
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Figure 2.  MSE(λ) and SURE(λ) for Cameraman. (a) MSE(λ) and SURE(λ) based on 
Tikhonov Regularization. (b) MSE(λ) and SURE(λ) based on TV Regularization. 
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Figure 3. Visual Comparison of SURE-optimized Deblurred Results for Peppers. 
(a)Original image. (b) Degraded image. (c) Restored image by using Tikhonov 

regularization. (d) Restored image by using TV regularization. 
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Figure 4.  MSE(λ) and SURE(λ) for cameraman for peppers. (a) MSE(λ) and SURE(λ) based 

on Tikhonov regularization. (b) MSE(λ) and SURE(λ) based on TV regularization. 
 

 
Table 1. Comparison of MSE and SURE in Terms of Output PSNR (dB) 

Regularization
method 

Image Input PSNR 
Output PSNR based 

on MSE 
Output PSNR based 

on SURE 

Tikhonov 
Cameraman 19.7608 23.7006 23.7006 

Peppers 19.9057 26.0399 26.0122 

TV 
Cameraman 19.7608 24.9044 24.9044 

Peppers 19.9057 27.8045 27.7497 
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