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Abstract 
This paper aims to study the application of medical imaging technology with artificial intelligence 

technology on how to improve the diagnostic accuracy rate for hepatocellular carcinoma. The   recognition 
method based on genetic algorithm (GA) and Neural Network are presented. GA was used to select 20 
optimal features from the 401 initial features. BP (Back-propagation Neural Network, BP) and PNN 
(Probabilistic Neural Network, PNN) were used to classify tested samples based on these optimized 
features, and make comparison between results based on 20 optimal features and the all 401 features. 
The results of the experiment show that the method can improve the recognition rate. 
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1. Introduction 

In the clinical work, 31P Magnetic Resonance Spectroscopy (31-Phosphorus and 
Magnetic Resonance Spectroscopy, 31P-MRS) technology [1, 2] can use slight changes of 
chemical shift in information collection todetermine the human energy metabolism and body 
chemicals. That  is currently the only noninvasive approach in studying physiological pathology 
changes of emerging technologies in vivo. So the evaluation and 31P-MR spectrum of disease 
diagnosis and treatment are important clinical significance [3, 4]. 

Artificial neural network is an imitation of biological brain in the information processing 
method. This technique can be a very good deal with multivariable nonlinear relation. It can be 
usedfor identification and classification through the training of complex mode. At present, the 
neural network in 31P magnetic resonance spectroscopy (31P-MRS) study has been widely 
used. Among them, the reverse transmission Neural Net-work(Back prop-agation Neural 
Network, BP) model is a more important artificial Neural Net-work model. BP is the advantage of 
network optimization with accuracy. Proba-bilistic neural network (probabilistic neural network, 
PNN) is a variation form of the radial basis function, also with the characteristic of the simple 
structure, training quickly and so on. 

 
 

2. Magnetic Resonance Phosphorus Spectrum 
All cases were selected randomly from Shandong medical imaging research institute 

from Jan. 2008 to Jan. 2009. There are 130 sample data, including 45 cases for hepatocellular 
carcinoma, and 28 cases for liver cirrhosis, 57 cases for the normal. In the normal group, with 
the conventional check,  no history of liver disease is recognized, all liver cirrho-sis and HCC 
patients in 31P-MRS after research all cases are confirmed by biopsy pathology. 31P-MRS can 
measure the seven formants (Figure 1): single phosph-ate ester(phosphomonoester, PME), 
inor-ganic phosphorus (inorganic phosphorus, Pi), phosphoric acid two fat (phospho-diester, 
PDE), phosphoric acid creatine (phosphocreatine, PCr), adenosine tripho-sphate (α-ATP, β-
ATP, γ-ATP) [5]. 31P MRS curve describs the main index: chemical shift, wave integral area, 
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Euclidean norm to measure weights of the distance between the input vector and the 
weights vector. At the same time, using reflect probability density of gaussian function as the 
transfer function of hidden layer (Be 

2ne  , including n is the input value of the radial basis 
function neurons ). 
 
 
5.  Results 

This experiment is based on three data set: I. the medical feature set collecting from the 
liver 31P-MRS of the 20 features out, 20 characteristic separately referred to PME, Pi, PDE, 
PCr, ATP(α, β, γ) chemical shift and the area under the peak and PME/PDE, Pi/PDE, PCr/PDE, 
α-ATP/PDE, β-ATP/PDE, γ-ATP/ PDE; II. 31P-MRS data of 401 all the spectrum characteristics; 
III. Using GA algorithm to select the best out of the 20 features. 

 
5.1. Based on BP Neural Network Experiment 
 
 

Table 1.  3-fold Experimental Results 
Feature Set  Carcino

ma(%) 
Liver 

cirrhosis(%) 
Normal(%) Running time(S) 

I 
II 

III 

84 
75.1 
82.2 

73.6 
64.3 
87.1 

91.2 
92.9 
95.1 

56.8 
37.5 
28.9 

 
 

Table 2.  5-fold Experimental Results 
Feature 

Set 
Carcinoma(

%) 
Liver 

cirrhosis(%) 
Normal(%) Running time(S) 

I 
II 

III 

80.4 
77.8 
82.2 

73.6 
70 

80.7 

89.8 
89.8 
90.9 

125.48 
78.2 
62.8 

 
 

Table 3.  10-fold Experimental Results 

Feature Set 
Carcinoma(

%) 
Liver 

cirrhosis(%) 
Normal(%) Running time(S) 

I 
II 

III 

81.5 
74.2 
84.4 

79.3 
72.1 
87.1 

90.2 
93.7 
95.8 

172 
133 

89 

 
 
5.2. PNN Neural Network based on Experiments 
 
 

Table 4.  3-fold Experimental Results 
Feature 

Set 
Carcinoma(%

) 
Liver 

cirrhosis(%) 
Normal(%) Running time(S) 

I 
II 

III 

71.1 
77.8 
78.2 

70.7 
71.4 
67.8 

92.6 
91.2 
92.9 

3.14 
3.69 
2.83 

 
 

Table 5.  5-fold Experimental Results 
 

Feature Set 
Carcinoma(

%) 
Liver 

cirrhosis(%) 
Normal(%) Running time(S) 

I 
II 

III 

68.6 
78.2 
78.7 

70 
70.7 
72.1 

92.9 
90.5 
90.9 

5.48 
5.73 
4.14 
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To test and verify the validity of the method of GA-BP, this paper respectively uses the 
3-fold, fold 5-10-fold cross validation methods, to randomly  divide the feature setsinto training 
set and test set, and to count the test set an average of 10 times identification accuracy. The 
results shown in table 1, 2, 3, and the experiment in three different feature set the results were 
compared. 
 

Table 6.  10-fold Experimental Results 

Feature Set 
Carcinoma(

%) 
Liver 

cirrhosis(%) 
Normal(%) Running time(S) 

I 
II 

III 

80 
80 

82.2 

75 
92.8 
82.1 

89.5 
80.7 
87.7 

25.48 
11.61 

7.23 

 
 
6. Discussion 

Genetic algorithm (Genetic Algori-thms, the GA) [9, 10, 11] was proposed firstly inthe 
university of Michigan by John Holland in 1975, it is a kind of biological by natural selection and 
natural Genetic mechanism of random search algorithm. It is a kind of group, operation objects 
are all individuals in the group. Through the choice, a new generation of groups is produced by 
cross and variation operation. As a kind of efficient parallel, its main characteristic is the 
searching strategy in group and individual information exchange, automatic acquisition and 
accumulation of the knowledge of the search for the space can be achieved in the search 
process, and the optimal solution can be got in the adaptive control search process. 

From Table 1, which can be seen after GA feature selection of the classified accuracy, 
all spectrum is significantly higher than the original one, liver cirrhosis recognition rate increased 
from the original 64.3% to 87.1. Table 3 based on data set III in the recognition rate of normal 
as high as 95.8%. Compared to medical 20 characteristics, using GA 20 feature selection, 
running time also greatly reduced. Table 3, the use of medical 20 feature, run 10 times need 
172 seconds, and use the feature extraction GA 20, run 10 times only 89 seconds. 

From Table 4, 5, 6, which can be seen PNN neural network based on the hepato-
cellular carcinoma diagnosis also achieve high accuracy. And medical feature 20, compared the 
choice of GA 20 characteri-stics, we can draw the higher recognition rate. In table 6, based on 
GA choice of 20 characteristics, the recognition rate of cancer by more than 2.2% out. 

A combination of the experimental results, the experiment based on BP is slightly below 
the accuracy of PNN, but from running time to see, the cost of the experiment PNN time be 
much less. To contrast Table 1 and table 4, the cost of the experiment time based on BP is 15-
20 times of PNN. 

This neural network particularly is much more suitable for solving pattern classification 
problems, which can realize fault detection and diagnosis. In the model classification, its 
advantage is that it can use linear learning algorithm to complete before nonlinear algorithm 
work, mean-while, it can keep the characteristics of high precision nonlinear algorithm. 
 
 
7. Conclusion 

Through the above analysis, to use the genetic algorithm in feature selection and  
features deletion have small contribution to the correct classification. Thus, it influence the 
characteristic classification,  and can find out the problem space to represent the optimal 
feature. 

The experiment proves that the genetic algorithm can overcome some of the pitfalls of 
neural network in different extent, which means it can make use of medical imaging technology 
and artificial intelligence technology to improve the combination of sample classification 
accuracy that is the diagnosis accuracy rate. 
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