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 Coronary artery calcification is a calcium buildup within the walls of the 
arteries. It is considered a predominant marker for coronary artery disease. 

Thus many approaches have been developed for the automatic detection of 
calcification. The previous calcification detection was on segmentation of other 
structures as pre-processing steps or using the fact that the calcification often 
appears as a bright region. In this paper, an automated system proposed using a 
deep learning approach to detect the calcification absence and calcification 
presence in coronary artery IVUS image. A useful advantage of deep learning, 
compared to other methods is, it uses representations and features directly from 
the raw data, bypassing the need to manually extract features, a common that 

required in the traditional machine learning framework. The type of deep 
learning architecture used is 27 layers of convolutional neural networks 
(CNNs) using direct acyclic graph. The proposed system used 2175 images and 
achieved an accuracy of 98.16% for Cartesian coordinate images and 99.08% 
for polar reconstructed coordinate images. 
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1. INTRODUCTION  

Cardiovascular disease (CVD) involved disease that affected the heart and the blood vessel, such as 

coronary artery disease and stroke. Other cardiovascular diseases type related to the heart are hypertensive, 

inflammatory and rheumatic disease [1]. Cardiovascular diseases (CVD) are the leading non-communicable 

diseases (NCDs) that cause death [2]. The estimation of death in 2016 was 41 million, equivalent to 71% for 

all deaths globally caused by NCDs. Out of these, 17.9 million deaths (44%) are due to CVD, 9.0 million 

deaths (22%) are due to cancer, 3.8 million deaths (9%) are due to chronic respiratory disease, and 1.6 
million deaths (4%) are due to diabetes. Coronary artery calcification is a calcium buildup within the wall of 

the arteries that supply oxygen-rich blood to the heart. This calcium causes the walls to become more 

hardened, as seen with atherosclerosis. Coronary artery calcification is highly prevalent in patients with 

coronary heart disease and is associated with adverse cardiovascular events [3], [4]. Besides, the presence or 

absence of calcium, shown to be the determinant of the percutaneous coronary intervention (PCI) success [5].  

https://creativecommons.org/licenses/by-sa/4.0/
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In Figure 1(a), the author illustrates the coronary artery cross-section to show the four main 

structures, namely the tunica adventitia, tunica media, tunica intima and lumen. Figure 1(b) shows the 

original image of the intravascular ultrasound (IVUS) image in portable network graphic (PNG) format, 

while Figure 1(c) shows the transformed image (polar reconstructed image) of Figure 1(b). In the IVUS 

image, Coronary artery calcification appears as a bright hyperechoic (blue arrow) compared to the adventitia 

and often appear with a corresponding dark shadow artefact (yellow arrow) behind the tunica media and 

tunica adventitia.  

 
 

 
(a) 

 
(b) 

 
(c) 

 

Figure 1. (a) The illustration of the cross-section layers of the blood vessel wall by the author  

(b) and sample of coronary artery IVUS image with calcification presense in cartesian coordinate image  

(c) and in polar reconstructed coordinate image  
 

 

The study to detect calcification on intravascular ultrasound images have been done by many 

researchers. The methods used for calcification detection involve various segmentation and feature extraction 

based approaches in the cartesian coordinate image and polar reconstructed coordinate image of the coronary 

artery. Since calcification often found in the surrounding area near tunica lumen and tunica adventitia, many 

approaches often perform segmentation of these regions before performing the calcification detection. Work 

in [6] used 60 IVUS images from 7 patients as the test images to detect calcification. All the image converted 

into the polar reconstructed coordinate image. Then parametric deformable models and geometric deformable 

models were used to detect the lumen and media adventitia border. Then bayesian classifier is used to find 

calcification inside the region between the lumen and the adventitia boundary. The result obtained is good, 
with a score of above 90%. Similar work is proposed by [7] using fuzzy k-means. Another study that worked 

is described in [8]. The proposed method first segmented was the coronary wall and plaque. Then, the 

proposed method continued with the determination for plaque composition to one of the main three classes: 

soft plaque, hardened plaque or, hard plaque shadow. 

Another main important characteristic of the calcification is that the calcification regions often 

represent high-intensity echo in IVUS images. This fact makes it possible to segment the calcified region 

area by using gray-level threshold techniques. Adaptive threshold (otsu method), followed by morphological 

operation, then an empirical threshold value was proposed by [9] to segment the calcification boundary. The 

second work that utilized the otsu thresholding technique is [10]. Their method was further improving by 

introducing an additional procedure that can eliminate wrongly segmented bright regions, which is quite 

similar in appearance to calcification. Furthermore, the detection of an acoustic shadow performed well. 

Twenty images obtained were from different patients, 15 images presented with calcification and five images 
without calcification. This results obtained were 88% specificity and 84% sensitivity. 

All work of the aforementioned required performing segmentation of the region of interest before 

calcification detection. In recent years, calcification detection was by assessing the overall appearance of an 

IVUS image. Using this approach of a unique image pattern extracted from the image and reasoning is made 

to identify the relationship between the perceived patterns and possible diagnosis. This work has the 

advantages of not relying on the result of the segmentation of other regions. As mentioned earlier, the 

calcification presence in IVUS can see when a dark shadow artefact appeared behind the calcification. The 

presence of the calcification and the dark shadow artefact will make the media boundary segmentation very 

challenging.  

Coarse to fine was a strategy by [11] to detect the calcification region. The method first used 

rayleigh mixture model (RMM) for pixel classification. Then the detection of angular location of the 
calcification using markov random field (MRF) was performed. The next step was a refinement of the 

detected calcification region by five predefined constraints. Lastly, the graph searching algorithm was to 

identify the final calcification border. A total of 996 images from eight patients had used in this study. The 
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images are composed of 498 with calcified plaque and another 498 without calcified plaque. The results 

obtained was a good result with a score of above 94%. 

The deep learning method is the current technology widely used using the concept of neural network 

and machine learning for medical imaging images. The main advantage of deep learning is the computers 

learn useful representations and features directly from the raw data, bypassing the need to manually extract 

features required in the traditional machine learning framework [12]. The application using deep learning 

methods had triggered the researchers to use deep learning to analyze the images [13], [14]. Deep learning is 

becoming popular among medical researchers in medical imaging, such as detecting cancer cells, eye disease, 

lung disease and coronary artery disease. The types of CNNs network used varies between different 

applications. For example, a pre-trained CNN network of VGG16 [15] and, InceptionResNet-V2, Inception-
V3 and, ResNet-50 architecture [16] had used to detect diabetic macular edema (DME). AlexNet, VGG19 

and, Inception- V3 architecture had used to detect kawasaki disease in optical coherence tomography (OCT) 

images [17]. AlexNet, VGGNet, GoogleNet and ResNet architecture had used to detect breast cancer using 

mammogram images [18]. AlexNet architecture alone also used to find the thorax disease in Lung using an 

X-Ray [19] and a tumour from the breast mammography images [20] and AlexNet, ResNet-101 and 

InceptionResNet-V2 architecture had used to detect calcification in Cartesian coordinate IVUS images and 

Polar reconstructed coordinate IVUS images [21]. 

Due to the effectiveness of using deep learning for medical image classification, in this paper we 

described a framework for calcification detection using deep learning, specifically proposed 27 layers of 

convolutional neural networks (CNNs) using direct acyclic graph and transfers learning. The 27 layers CNNs 

consists of an input max-pooling, batch normalization and rectified linear unit (ReLu), 6-convolutional layers 
with max-pooling, batch normalization and ReLu and 1-Fully connected layer to detect calcification in 

intravascular ultrasound (IVUS) image. The approach will classify the images into one of these two classes, 

the images with calcification and images without calcification. To our knowledge, the direct acyclic graph 

CNN has not applied to IVUS image for calcification detection in any previous works. 

 

 

2. MATERIALS AND METHOD  

2.1.   Material 

The image dataset used is obtained from dataset B from MICCAI challenge 2011. It consists of 

2175 images from 10 patients, where 1645 are images with plaque composites, and another 530 images are 

with composites plaque and calcification [22]. All of the images extracted from in vivo pullbacks of the 

coronary artery. The Intravascular ultrasound imaging systems used for the acquisition is Si5 equipped with a 
20MHz eagle eye monorail catheter. The image we analyzed is a cartesian coordinate image in a portable 

network graphic (PNG). The total images from dataset B would divide into two classes; calcification present 

and calcification absent. All the original size of the image were 384 by 384 with 1-channel. In this study, two 

types of images used to analyze the presence and absence of the calcification was the cartesian coordinate 

images and polar reconstructed coordinate images. The second image, the polar reconstructed coordinate 

image, was obtained by transforming the cartesian coordinate image using the daugman rubber sheet 

normalization model. After transformation, the polar reconstructed images are resized to 384 by 384, similar 

to the cartesian coordinate image. Figure 2 showed the image transformation on the intravascular ultrasound 

image using the daugman rubber sheet normalization model [18].  

 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 2. (a) Cartesian coordinate image; (b) The transformed model using rubber sheet normalization model; 

(c) Polar reconstructed coordinate image [18] 

 

 

2.2.   Proposed architecture 

Figure 3(a) shows the proposed 27 layers of convolutional neural networks (CNNs) using direct 

acyclic graph (DAGNet-27). The design was suitable to be used for an IVUS image of size 384 by 384 with 
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1- channel. The input image has been built together with max pool, batch normalization and ReLu whilst the 

convolutional also was built together with max pool, batch normalization and ReLU. The DAGNet-27 has 27 

layers with net properties, [27x1 nnet.cnn.layer.Layer]; Connections: [27x2 table]. In Figure 3(a), there are 

six convolutions layers by layers used, 3rd convolutions layers by layers show that the algorithm used 

transfer learning. Figure 3(b) shows the convolutional layers built together with the max pool, batch 

normalization and ReLu layer. In the CNNs architecture proposed, we did not use dropout because the gap 

between the validations, training and smoothing is minimal. We choose the max pool without overlapping to 

get a better edge for calcification detection. This proposed CNNs architecture was designed based on the size 
of the original IVUS images. The CNNs architecture proposed used 1-channel images as compared to 

standard CNN algorithms that used 3- channel images. 

 

 

 
(a) 

 

 

 

 

 

 

 
 (b) 

 

Figure 3. (a) Top - The DAGNet – 27 architecture with 6 - convolution layers and 1 - fully connected layer 

(b) Bottom- the convolutional layers with maxpool layer, batch normalization layer and ReLu layer 

 

 

Figure 4 shows the proposed framework block diagram for calcification detection using an original 

image of size 384 by 384 with 1-channel. First, all the image were resized to 384 by 384 with 1-channel, then 

all the image were separated into two classes, as CALC (Calcification presence) and as NoCALC 

(calcification absence). The next step was to feed the image to the DAGNet-27 architecture for further the 
deep feature learning process. The output layer is the fully connected layers together with the softmax layer 

and class output layer. Next, classification with cross-validation will perform using split. The value of the 

splitting used; 0.4999, 0.6666, 0.8 and 0.9. For the partitioning, the k-fold formula are TR=(k-1)/k is the 

training and, TE=1/k is the testing [21]. The value of k is 2, 3, 5 and 10 [21]. The k-fold cross-validation is a 

procedure used to estimate the skill of the model on new data. The fold cross-validation is applied for this 

research to evaluate the predictive model by partitioning the original samples during testing and training. The 

reason is, the method provides adequate data for training and data for validation. The proposed model was 

pre-trained to save time and to get better performance. The training classifier for dataset B was assigned 

using labelling; 'CALC' and 'NoCALC' as define earlier. In the last step, the results obtained will compare 

with the ground truth [22]. 

 

 

 
 

Figure 4. The framework of the proposed convolutional neural networks with 1-channel 
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2.3.   Learnable parameters 

The learnable parameters were the sum of offset, scale, weight and biases. The non-learnable 

parameters are the activation of the height product, the filter width and the input channels number. The total 

learnable parameters of the CNN architecture are the total sums of the convolution layers and fully connected 

that have weight and biases. The non-learnable parameters are the product of image input size for the filter 

size and the numbers of channels. The total number of the convolutional layer parameters is [((h*w*c + 

1)*Filters Numbers)], where '1' is the bias. The convolutional layer output size, is for the output height and 

width that is [(The size of the Input – ((The size of the Filter – 1)*Dilation Factor + 1) + 2*Padding)/Stride + 

1]. The total neuron number for the output size in a convolutional layer is the Map Size of product*Filters 

Numbers. The total parameters for the fully connected layer are the multiplication of the input by adding 
weight matrix, W and bias vector [23]. The non-overlapping max pool for 1-channel of the pool size and 

stride is the same. The input for the pooling layer is n-by-n. The h-by-h is the pooling layer down-samples 

the regions by h. Therefore, the maximum output or average pooling region size is the layer for one channel 

of a convolutional layer that is n/h-by-n/h [24]. The total parameters obtained was 55668. 

 

 

3. RESULTS AND DISCUSSION  

The results were shown in Table 1 and Table 2 for both types of images. The 1st column of the table 

is the k-fold, taken value k as 2, 3, 5 and 10. Other data recorded are the outcomes from the confusion matrix, 

namely the true positive (TP), false positive (FP), true negative (TN), and false negative (FN). TP is the total 

calcification presence correctly detected, FP is the total calcification absence incorrectly detected as 
calcification presence, TN is the total calcification absence correctly detected and FP is the total calcification 

absence incorrectly detected as calcification presence? The derived measurements from the confusion matrix 

are also recorded. They are accuracy (Acc), sensitivity (Sn), specificity (Sp), positive predictive value (PPV) 

and negative predictive value (NPV). Accuracy is the ratio number of correct predictions to the total number 

of testing images. Sensitivity is the true positive rate and is defined as TP/(FN+TP). Specificity is a true 

negative rate and is defined as TN/(FP+TN). PPV is the probability that the disease is presence given a 

positive test result and is defined as TP/TP+FP. Similarly, the NPV is the probability that the disease is 

absent given a negative test result, and is defined as TN/TN+FN [25]. 

Table 1 and Table 2 shows the cartesian coordinate images and polar reconstructed coordinate 

images performance respectively. For the cartesian coordinate images, the range value for 2-fold is from 

88.30% to 98.70%, whilst the range value for 3-fold is 93.80% to 98.90% and 5-fold the range value is 

94.30% to 98.80%. The 10-fold has shown an excellent performance value, ranging from 92.50% to 100.0%. 
For Polar Reconstructed coordinate image, the range value for 2-fold is from 90.60% to 97.90%, whilst the 

range value for 3-fold is 93.20% to 99.50% and 5-fold the range value is 97.20% to 99.70%. The 10-fold has 

shown a performance value ranging from 92.50% to 100.0%. Table 2 shows the improvement results i.e. the 

performance measures such as the accuracy, sensitivity, specificity and, negative prediction value are better 

when the k-fold is larger when more images are used for training and fewer images are used for testing. 

 
 

Table 1. The confusion matrix and performance measure evaluation of cartesian coordinate image 

k-fold 
Confusion matrix (Testing)  Performance Measure Evaluation (%) 

TP TN FP FN  Acc Sn Sp PPV NPV 

2 234 812 31 11  96.14 95.50 96.30 88.30 98.70 

3 166 542 11 6  97.66 96.50 98.00 93.80 98.90 

5 100 325 6 4  97.70 98.20 98.20 94.30 98.80 

10 49 164 4 0  98.16 100.00 97.60 92.50 100.00 

 

 

Table 2. The confusion matrix and performance measure evaluation of polar reconstructed coordinate image 

k-fold 
Confusion matrix (Testing)  Performance Measure Evaluation (%) 

TP TN FP FN  Acc Sn Sp PPV NPV 

2 240 806 25 17  96.14 93.40 97.00 90.60 97.90 

3 165 545 12 3  97.93 98.20 97.80 93.20 99.50 

5 103 328 3 1  99.08 99.00 99.10 97.20 99.70 

10 51 164 2 0  99.08 100.00 89.80 89.20 100.00 

 
 

Figure 5 and Figure 6 shows the training progress for 10-fold for cartesian coordinate image and 

polar reconstructed coordinate image respectively. The validation accuracy shows 100% with 10-epoch and 

225 iterations with 15 iterations per epoch. The time taken was about 23 minutes 33 seconds for cartesian 

coordinate images and 23 minutes 41 seconds for polar reconstructed coordinate image. By using the pre-
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trained-model, Figure 4 shows the training progress for cartesian coordinate images and polar reconstructed 

coordinate images at the higher start of the performance whilst higher slope and higher asymptote for the 

performance versus training [26]. The final result is Table 3 and it shows the comparison result between the 

proposed method and other works in the literature. 

 

 

 
 

Figure 5. The proposed architecture training progress using transfer learning for 10-fold for cartesian 

coordinate image  

 

 

 
 

Figure 6. The proposed architecture training progress using transfer learning for 10-fold for polar 

reconstructed coordinate image 

 

 
Table 3. The performance measures evaluation using deep learning  

Author Diseases Acc(%) Sp(%) Sn(%) PPV(%) NPV(%) 

Proposed Architecture 

 

Coronary Artery Disease (IVUS) – Calcification 

with the plaque 

99.08  

 

100.00 

 

89.80 

 

89.20 100.00 

Awais et al. 2018 

 

Diabetic Macular Edema (OCT) 87.50 93.50 81.00 - - 

Gao et al. 2014 

 

Coronary Artery Disease (IVUS)–Calcified - 94.68 95.82 - - 

Taki et al. 2008 Coronary Artery Disease (IVUS) – Calcification - 92.76 98.50 - - 
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4. CONCLUSION  

The proposed convolutional neural network architecture shows that the results obtained from the 

polar reconstructed coordinates images are better as compared to the cartesian coordinate image. In this 

study, using a direct acyclic graph and transfer learning has shown that deep learning had better results to 

differentiate images with calcification presence and calcification absence. When compared with two types of 

images, both images had an excellent performance measure evaluation result in accuracy, 99.08% and 

98.16%, sensitivity, 89.80% and 97.60% whilst negative predictive value, 89.20% and 92.50% and the 

perfect performance measure evaluation result in sensitivity and negative prediction value were 100%. 
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