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Abstract 
 Collision detection is an important aspect in many real-time simulation environments.  Due to its 

nature of high Computation involved, collision detection can contribute to the bottleneck on the system 
involving large number of interacting objects.  This paper focuses on finding options to efficiently cull away 
object pairs that are not likely to collide in large-scale dynamic rigid-body simulations involving n-body 
objects.  The main idea is to perform time critical computing concept by manipulation of potential bounding 
volume techniques.  In order to take advantage of a fast collision test and a more accurate result, a hybrid 
collision culling approach based on sphere-or-Dops was used.  Based on initial results, this approach 
shows a potential adaptation to a massive rigid body simulation. 
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1. Introduction 

Collision detection is usually an integral part to many real-time and interactive 
applications.  There are many applications that relies on collision detection such as in the field 
of virtual reality, computer games, animation, training, engineering and medical simulation.  With 
these vast areas of collision detection applications, it is understandable that collision detection 
research is still an active research area.  Despite the advances in technology, collision detection 
still contributes to the system bottlenecks for more than thirty years [1]. 

In many real-time and interactive applications, collision detection is a pre-requisite for 
realistic system response.  A simple example is involving a computer generated bouncing ball.  
Collision between the ball and any obstacles need to be detected so that the system can 
generate appropriate response like the direction and momentum after impact.  Collision 
detection and collision response usually are carried out successively [2]. 

The main purpose of collision detection is to ensure that there will not be any two 
objects that occupy the same space at the same time.  This is equivalent to how objects behave 
in the real world–two objects cannot fit into the same space at exactly the same time.  
Depending on the level of accuracy that is needed on the application, collision detection 
process can either simply flag intersection(s) between objects, or it might produce detailed 
report on the event like time of contact, point of contact and interpenetration depth.  The first 
type of detection can be carried out in a very short time but does not yield much information 
about the collision.  Application like computer games that requires approximate but fast collision 
detection usually adopts these types of collision detection approaches.  On the other hand, 
more computation needs to be carried out in order to get detailed collision information needed 
for a more serious application as in medical simulator.  Therefore there is generally trade-offs 
between speed and accuracy in collision detection.  At the same time, issues like real-time 
performance, efficiency and robustness need to be addressed [1]. 

Perhaps the most adapted approach in trading speed and accuracy was introduced by 
Hubbard as can be seen in many research papers concerning collision detection.  It works 
based on the idea of time-critical computing: collision detection and response for interactive 
graphics applications can be improved by using a two-phase process: broad-phase and narrow-
phase [3].  Collision culling, which in essence deals with quickly removing object pairs that are 
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less likely to collide is very much related to the broad-phase level, as will be discussed 
thoroughly in the next section.  This will be the focus of this paper. 

The rest of this paper will be organized as follows: related work, particularly involving 
bounding volume in broad-phase collision culling will be discussed in Section II followed by the 
idea of hybrid collision culling in Section III.  Experimental layout will be outlined in Section IV.  
Section V deals with the result and discussion, while Section VI concludes this paper. 
 
 
2. Related Work 

As mentioned in previous section, a two-phase approach is usually adopted in 
minimizing collision tests due to the nature of collision detection that is computationally 
intensive.  Generally, the broad-phase collision detection acts more like a filter that identifies 
only pairs of objects that are more likely to collide.  This step is responsible to cull away 
unrelated pairs in the whole collision detection process, and thus synonymous with the term 
‘collision culling’.  These identified pairs are then fed to the narrow-phase collision detection for 
further collision tests (please refer to [4] for an elaborate discussion on collision detection 
approaches and applications). 

Different approaches can be implemented during collision culling process such as the 
brute force (all-pair test), sweep and prune (SaP) and hierarchical hash table [4].  Method 
implemented in this study is based on bounding volume technique which is very conventional 
with the first approach.  Conventional bounding volumes that are commonly used in the broad-
phase level will be presented next. 

 
2.1. Conventional Bounding Volumes 

Bounding volume is one of the most commonly used broad-phase collision detection 
approach in simulations involving n-body objects.  Based on its popularity, we will next outline 
some of the popular bounding volumes. 

Bounding volume algorithms encompasses techniques like bounding sphere, Axis-
aligned bounding box (AABB), oriented bounding box (OBB) and discrete orientation polytopes 
(k-DOPs) (see Figure 1). Oriented-Dops (or-Dops), a combination of OBB and k-Dops was 
introduced to overcome the update cost of k-Dops [5] (shown as Figure 2). 

 
 

 

 

Figure 1. Conventional Bounding Volumes  
 

 

Figure 2. Oriented-Dops or also known as or-
Dops  

 
2.2. Bounding Volumes: Simplicity Versus Accuracy 

Based on previous research, these bounding volumes had its own advantages and 
disadvantages.  In short, a simple bounding volume requires less computation in terms of 
construction, updates and tests.  Therefore it is expected that simulations or applications 
utilizing simple bounding volumes can give higher frame rates but with the cost of more false 
positive test outcome.  A false positive collision occurred when collision test based on bounding 
volume gives a positive result (collision detected) but the actual object did not collide.  This is 
due to large empty corners caused by simple bounding volume.  On the other hand, a more 
accurate bounding volume requires more computation and more time, resulting in less frame 
rates.  The previous bounding volumes can be roughly arranged according to simplicity versus 
accuracy as in Figure 3. 
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Figure 3. Simplicity versus Accuracy 
 

 
2.3. Time-Critical Collision Detection 

The idea of time-critical collision detection, as introduced by Hubbard [3], has been 
adapted by many researchers.  Although it is quite impossible to include all references in this 
category, some of highly related work will be discussed here.  Most of the approaches use 
bounding volume hierarchy (BVH) in one way or another.  One of them utilized the tree called 
average-distribution tree or ADB-tree [6] that is a combination of bounding volume hierarchy 
(BVH) with an estimated probability of collision occurrence to reduce collision tests.  Sphere-
tree was used for time-critical collision detection by at least two researchers; sphere-tree on 
reduced model for deformable objects [7] and sphere-tree with closest feature maps (CFMs) 
applied to refinable collision response [8, 9].  An AABB-tree with reduced deformable model was 
also used for self-collision culling [10].  An event-based scheduling that adaptively prioritizing 
collision tests and performs collision tests at different time interval was introduced by Coming 
and Staadt [11, 12], while a BVH was used with certificates that indicate absence of self-
collision [10]. 

 
2.4. Total Cost Benchmarking 

Total cost benchmarking (Equation 1) for collision detection that was proposed by [13] 
will be used as a basis: 

 
T = Nu x Cu + Nv x Cv + Np x Cp+ Co      (1) 
 

Where: 
T: total cost function for interference detection, 
Nv: number of bounding volume pair overlap tests 
Cv: cost of testing a pair of bounding volumes for overlap 
Np: is the number primitive pairs tested for interference, 
Cp: cost of testing a pair of primitives for interference, 
Nu: number of bounding volumes updated, 
Cu: cost of average bounding volume update, 
Co: indicates cost for one time processing, where necessary 

However, not all parameters must be involved; they depend on the problem and the type of 
collision involved. 
 
 
3. Hybrid Collision Culling Method 

The main purpose of collision culling is to reduce collision tests by identifying and 
culling away unnecessary pairs.  The basic collision detection process which usually is carried 
out in a two-phase process (broad-phase and narrow-phase) inspires a two-phase collision 
culling process in order to achieve a simple, fast and reliable collision detection. 

The culling process will be based on the bounding volume approach.  Since there are 
quite a number of popular bounding volume, a question will needs to be address is the type of 
bounding volumes that is suitable for that purpose.  If there are suitable candidates, is there any 
way that performance of the culling process can be improved? 

There are two main issues that need to be considered in the question above.  On the 
one hand, a simple and fast collision test is needed but on the other hand, it also needs to be 
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The first experiment was conducted to test collision time using different types of bounding 
volumes while the second experiment was conducted to test the average update time.  Results 
from these experiments were fed into the Total Cost Benchmarking function.  The last 
experiment was implemented to roughly show the overall performance based on frames-per-
second (FPS) counts. 

 
4.2.2. Part II 

The second part of this test deals with further experiments on the proposed hybrid 
collision culling method.  As mentioned earlier, the hybrid collision culling is a two-phase 
collision culling process designed to achieve a simple, fast and reliable collision detection.  The 
scene involves a combination of randomly moving objects and some static objects inside a box 
(see Figure 5a and 5b for a sample of loaded objects).  Similar to experiments in Part I, objects 
are allowed to go through other objects but will simply change direction once they hit the 
boundary of the box to ensure that no object will wander off the boundaries.  Once collision is 
detected, a change of colour will visually indicate collision between two objects and related 
information will be logged.  While experiments in Part I only involved relatively small number of 
objects, the proposed method will be tested against conventional techniques in a massive rigid 
body simulation undergoing rigid-body simulation. 
 

 
Figure 5a. Sample Experiment using 50 

Objects without BV 

 
Figure 5b. Sample Experiment using 50 

Objects with Bounding Sphere 
 

 
5. Results and Analysis 
5.1. Part I 

Construction Time. Construction times for each objects used (as previously listed in 
Table 1) was recorded and repeated 100 times. Average construction time is shown in Figure 6. 

 

 
 

Figure 6. Effects of Selecting Different Switching under Dynamic Condition 
 
 

Number of detected collisions.  Initially, accumulated number of collisions detected was 
recorded for 100, 200, 300, 400 and 500 frames as indicated in Table 2 and Figure 7. 
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Figure 9. Total cost based on first 500 frames 
 
 

The total cost benchmarking process was also carried out for 1000 and 5000 frames 
simulations.  Experiments involving 1000 frames gave unexpected result where the value of 
total cost for k-Dops skyrocketed above OBB.  Based on the first 500 frames tested, AABB and 
k-Dops gave frame rates way below interactive frame rates (~60 fps), and this might contribute 
to the lapse.  These two bounding volumes are excluded in the 5000 frames test.  Results for 
the final test (5000 frames) are as expected; sphere gave the lowest cost, followed by or-Dops 
(see Figure 10). 

 
 

  
 

Figure 10. Total Cost based on 
Shortlisted BV and 5000 Frames 

Figure 13. Fps Performances for Different BV Approach 
for 500 Objects (first 100 frames) 

 
5.2. Part II 

Hybrid Collision Culling.  Results from the experiments in Part I show that combination 
of sphere and or-Dops bounding volumes offer the potential for an option towards a better 
collision culling process.  Hybrid collision culling that is a combination of bounding sphere and 
Oriented-Discrete Orientation Polytopes (Or-Dops) was implemented on multiple *.tri objects as 
outlined in previous section.  Figure 11 shows hybrid collision culling implemented on a pair of 
colliding object – this is done to purposely highlight the concept.  It was then tested against 
conventional bounding volume approach. 

 
 

 
 

Figure 11. Hybrid Collision culling–note the 
Pairs with Sphere and or-Dops 

 
 

Figure 12. Hybrid Collision Culling on 350 
Objects 
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Initial result based on the frames per second (fps) of 500 objects undergoing rigid 
motion is shown as Figure 13.  Simulation without bounding volume (thus no collision detection 
employed) was implemented as a control experiment.  If hybrid collision culling is employed on 
a particular object of interest (labeled as ‘1ObjHybrid’ in the graph), the frame rates can reach to 
nearly the performance of the control experiment, similar to the performance of sphere bounding 
volume.  Fps performance dropped if all objects employed hybrid collision culling, but it still 
outperforms the homogeneous or-Dops implementation.  Another approach was also tested 
where a two-pass test was employed (labeled as ‘Seq Sp-OrD’ in the graph).  The first test to 
identify pairs that are likely to collide based on bounding sphere tests.  These pairs are sent to 
the second pass where or-Dops tests will be conducted.  It shows an improved performance if 
all objects needs to employ the hybrid collision culling method. 

 
 
6. Conclusion 

Results from the experiments shows that the hybrid collision culling method shows the 
potential of an option for a better collision culling technique for massive rigid body simulation 
compared to the homogeneous bounding volumes.  However a detailed test like the total cost 
benchmarking test needs to be done to systematically evaluate this result. 
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