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 This paper presents a hybrid algorithm that combines the particle swarm 
optimization method with the bacteria foraging technique, named: BF-PSO. 
The aim is to achieve more efficient and precise parameters determination of 
the regulators that leads to performance improvement in the speed-loop 
control of an induction motor (IM) implemented in a direct torque control 
(DTC). The approach consists of tuning the proportional-integral (PI) 

parameters that meet high dynamics and tracking behavior using the hybrid 
BF-PSO algorithm. Investigations have been completed with 
Matlab/Simulink and several performance tests are conducted. The 
comparison results are exposed with the most used indices in the controllers' 
tuning with optimization techniques. It will be shown that the presented 
technique presents better quality results compared to the conventional 
method of calculated PI. 
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1. INTRODUCTION 

The conventional closed-loop speed regulation in the direct torque (DTC) induction motors control 

uses calculated PI techniques to achieve an acceptable level of performance. However, although PID 

controllers are widely used in industrial process control due to their simple structure and easy 
implementation, they present difficulties and become no longer suitable for the process to be regulated if 

confronted with external and internal uncertainties including the parametric variation. DTC also has various 

vulnerabilities, such as large torque ripple, variable switching frequency, and acoustic sound, which are 

directly or indirectly related to the PI gain values. Thus, the accurateness of these values becomes a crucial 

deal to the controller designer to conducts a stable system and achieves high performance.  

Despite several deep control theories that have been used, such as the Hinf technique as in [1], 

where a robust controller is designed using hybrid current-flux d-q equations of an induction machine. 

Additionally, the variable structure control (VSC) known for its robustness, may very well be suitable for 

systems whose uncertainties are limited, in [2] the authors have used a vector control strategy based on speed 

sliding mode control (SMC) and torque PI control for construction machinery. But as is familiar in the control 

community, this technique suffers from the phenomenon of chattering.  

https://creativecommons.org/licenses/by-sa/4.0/
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The introduction of computational intelligence in the field of process control has allowed numerous 

research projects to take place, and thus, enabling the development and implementation of new disciplines. 

The field generally covers bio-inspired techniques that deal with intelligence process, the most known are: 

fuzzy systems, artificial neural networks (ANN), evolutionary computation, and swarm intelligence (particle 

swarm (PSO), ant colonie (ACO), and bee colonie optimization (BCO). Since these types do not require a 

precise model of the process, they have found very wide applications in the field of IM control. Among 

original works we can found [3], [4] in fuzzy logic, and [5] in the field of control with ANN, or methods that 

combine both as in [6]. However, all these approaches suffer from computational burden and their use 

remains closely related to the development of computers and electronics.  

In these last two decades, the introduction of meta-heuristic optimization techniques in this field has 
opened up a new horizon in tuning methods. beneath them, the methods that are based on social and 

biological behaviors to locate an optimal solution such as; the genetic algorithm which is based on the theory 

of evolution and natural selection (darwinian/mendelian) resulting from the fittest individuals (survivors) [7], 

or the cerebral emotional learning mechanism responsible for processing emotions in the brain, this is 

essentially based on a selection of actions based on sensory inputs and emotional signals, like the regulators 

implemented in [8] where authors have proposed a brain emotional learning intelligent control for precise 

speed tracking of a hybrid stepper motor. In another work [9], a differential evolution algorithm was applied 

to optimize the gains of the PI controller involved in the model predictive torque control that minimizes the 

speed error. By this strategy, the authors have concluded that the motor's speed response was fast and stable.  

There are many other algorithms and classes of algorithms that are inspired by the "individual" and 

"collective" intelligence of social insects, as well as other animals and fish societies. They use different types 
of strategies to search for valuable foraging, group re-location, or prey evading. Among many interesting 

techniques, we can cite ACO and BCO colonies, and bacteria foraging algorithms [10]-[12]. 

The PSO algorithm was originally introduced by [13], it has acquired its reputation thanks to its 

simplicity of programming and its adaptation to a large number of problems. Important of recent researches 

used this technique as in [14], [15]. More specific publications are found in electric machine drives; in [16], a 

multi-objective particle swarm optimization algorithm was used in vector control drive to improve PI 

parameters of the speed controller to achieve a fast response of rotor speed and reduce torque ripple. 

Furthermore, the techniques which use hybridization occupy more and more place in the literature, as in [17] 

where the paper presents the PSO algorithm in conjunction with the fuzzy logic method to achieve an 

optimized tuning of a PID controller in a DTC control scheme. Or in [18] where the authors presented a 

speed and voltage PI controller's tuning algorithm using GA-PSO in vector control of an IM. A summarizing 

review on this topic can be found in [19]. 
In this work, we have used a combination of bacteria foraging with particle swarm optimization 

named: BF-PSO algorithm. The aim is to exploit it for an extensive search to realize a PI parameters 

optimization to achieve an optimal solution and contribution in the improvement of induction motor drive 

with DTC. The proposed procedure consists of tuning PI controllers' parameters using Simulink. In this late, 

we will take into consideration all the DTC and IM dynamics including nonlinératies and the switches model. 

Multiple manipulations with performance indices are tested; integral of the time multiplied by the absolute 

value of the error (ITAE), integral of the squared error (ISE), and the integral of the absolute value of the 

error (IAE), and lastly, the use of the integral time squared error (ITSE) plus the term of overshoot gave 

better results. 

This paper is structured as the following: in Section 2, the model of the induction motor and the 

DTC theory are presented. In Section 3, the description of PSO and BF techniques is given and followed by 
the design of the control strategy system based on the BF-PSO technique. The simulation results for the 

speed tracking and performance tests are given in Section 4, also comparisons of the PI and BF-PSO methods 

are effectuated with different indices. Finally, conclusions are presented in the Section 5.  

 

 

2. INDUCTION MOTOR MODEL AND DTC FUNDAMENTALS 

Explaining the term direct control of torque and flux is based on the fact that from the errors 

between the reference values of the torque (and the flux) and those estimated, it is possible if it knows the 

flux angle (thus the sectors) to directly control the states of the voltage source inverter (VSI) to reduce errors 

within the hysteresis band controllers as shown on Figure 2. 

 

2.1.   Induction motor model 

The dynamic model of 3-ph, Y-connected induction motor is given in the d-q synchronous frame as 

[20]: 
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Where vs=[vsd, vsa]T, ψr=[ψrd, ψrd]T, and is=[isd, isq]T are respectively the vectors of stator voltages, 

rotor flux linkages, and stator currents. ωs is the synchronous angular speed, ω is the electrical angular speed 

of the rotor, and ωsl = ωs - ω is the slip frequency, and: 
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Rs and Rr are the stator and rotor resistances, Ls and Lr are the stator and rotor inductances, Lm is the 

mutual inductances between the stator and the rotor winding, σ = 1- (Lm
2/LrLs) is the total leakage factor. The 

electromagnetic torque is then expressed as a function of the stator currents and rotor flux components as: 

 

m
e rd sq rq sd

r

L3
T p ( i i )

2 L
    (2) 

 

p: is the number of pole pairs. 

The mechanical equation of the IM is given by: 

 

e L vJd dt T T f      (3) 

 

Where; TL is the load torque, fv is the viscous friction coefficient, Ω is the mechanical rotor speed, 

and J is the inertia moment. 

 

2.2.   Direct torque control theory 

The DTC development is carried out on the stationary reference fame (α,β), the electrical equations 

of the IM are then [21]: 

 

s
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dt


 

 
    


 (4) 

 

Where is=[isα, isβ], ψs=[ψsα, ψsβ], ψr=[ψrα, ψrβ], vs=[vsα,vsβ] are respectively the vectors and 

components of; stator currents, stator/rotor flux linkages, and stator voltages.  

Stator- flux components are estimated by: 

 

s s s s(v R i )dt    (5) 

 
Modulus and angle of flux can be obtained as follows: 
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Therefore, the electromagnetic torque is estimated through (7): 

 

e s s s sT p( i i )       (7) 
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Using two hysteresis controllers, the difference between requested and estimated values are 

evaluated and thereby determine if the flux and torque vectors should be increased, decreased, or constant. 

Boolean signals are constructed from the switching table and used to genarate six input voltage vectors via 

the voltage source inverter depending on the sector number, as shown in Figure 1. 

 

 

 
 

Figure 1. Schematic of the DTC 

 

 

3. DESCRIPTION OF PARTICLE SWARM OPTIMIZATION AND BACTERIA FORAGING 

TECHNIQUES 

These techniques utilize concepts borrowed from the field of social behavior. They use a cognitive 

coherence developed to give a solution by acquired personal experience and collective influence of other 

members of the social group. 

 

3.1.   Basic concepts of particle sswarm optimization 
At each step (k), each particle moves in a way so it reaches a better local solution (evaluated by a 

fitness), it remembers the position where it achieved the best value compared to previous searches. This is 

called the individual best position (PiD
(k)). Also, the group keeps track of the position where the best value of 

the whole swarm was reached, and that what it's called the global best position (Pg
(k)) . 

The position and velocity of the ith particle in the kth iteration are denoted by vector of D-dimension 

XiD
(k)and ViD

(k)respectively. The PSO algorithm is performed on the basis of the following two iterative 

equations [22]:  

 
(k 1) (k) (k) (k) (k) (k)

1 1 2 2 gDiD iD iD iD iDV wV c r (P X ) c r (P X )


      (8) 

 
(k 1) (k) (k 1)
iD iD iDX X V
 

   (9) 

 

Where; w denotes the inertia weight, it's used to provide a balance between global and local search, 

thus requiring less iteration on average to find a sufficiently optimal solution, it's set according to (10), and 

decreases linearly from about 0.9 to 0.4 [23]. c1 is the cognitive and c2 is the social parameter. The 

coefficients r1, r2 are random numbers belonging to 0 and 1.  

 

max max min maxw w Iter.(W W ) / Iter    (10) 

 

Where; Iter, and Itermax, are the current iteration, and the maximum number of iterations respctively. 

On the right-hand side of (8), the second segment refers to the cognitive part, and it represents the 

distance between the particle XiD
(k) and its best-located solution PiD

(k). While the third segment represents the 

social component, which reflects the distance between the same particle and the global best solution PgD
(k). 

Once the velocity vector is updated based on the individual history and collective experience of the swarm, 

then, the particle moves to a new position through (9). This procedure continues until the best solution is 
reached or the algorithm meets user-defined stopping criteria. 
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3.2.   Bacteria foraging description 
Bacteria Foraging technique is developed from a nature-inspired optimization algorithm, it's mainly 

based on the foraging behavior as a group of Escherichia coli bacteria (E. coli).  

 

3.2.1. Escherichia coli (E. coli) bacteria [24] 

The E. coli bacteria have a control system that allows them to search for food (higher graduation of 

the nutrient) and to avoid harmful substances. A set of flagella gives bacteria the ability to move around by 

"swimming" or "tumbling", and generate consequently a motion pattern (called "chemotaxis") based on the 
presence of chemical attractants and repellents.  

Elimination and dispersal are part of motile behavior at the population level. The local environment 

in which a population of bacteria lives may change, in consequence, there will be events such as all the 

bacteria in a region are killed or a group is dispersed in a new part of the environment. It has the effect of 

damaging the chemotactic development, however, it also has a possible counter-effect (stimulating the 

chemotaxis) since the dispersion can relocate bacteria towards good sources of food. 

It is noted that E. coli bacteria besides chemotaxis is capable of "thermotaxis" in that it seeks 

warmer environments and "phototaxis" since it tries to avoid intense blue light, and can develop some kind of 

reproduction called "conjugation," and a mutation rate. A particularly group behavior has been demonstrated 

at high levels of the nutrient, the bacteria release an attractant so that they congregate into groups and hence, 

move as concentric patterns of groups with high bacterial density. 

 

3.2.2. Mathematical construction of bacterial foraging algorithm  

To model the BF algorithm we need to define a population (S) of bacteria that execute these main 

actions; chemotaxis, swarming and tumbling, reproduction, and elimination-dispersion.First, let define 

J(i,j,k,l) the function coast value, θi(j,k,l) the ith bacteria position, and P(j,k,l) which represents the positions 

of each member in the population S at the jth chemotactic step, kth the reproduction step, and lththe 

elimination-dispersal event.Other BF parameters are defined in Table 1 [24]. 

 
 

Table 1. The parameters of bacteria foraging algorithm 
Variable Definition 

Nc Number of chemotactic steps 

Nre The number of reproduction steps 

Ns Maximum number of steps (swim length) 

Ned Elimination-dispersal events 

Ped Elimination-dispersal probability 

C(i) The step size during runs,    i=1,2,..........,S 

φ(i) Represents a tumble ( in random direction) 

n Dimension of the search space 

Δ(i) Random vector 

 
 

a) Population and chemotaxis:  

Themovement of ith bacterium after one step can be expressed by [24]: 
 

i i

T

(i)
( j 1,k, l) ( j, k, l) C(i)

(i) (i)


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 (11) 

 

If at θi(j +1,k,l) the cost J(i, j +1,k,l) is better (lower) than at θi(j, k, l), then another step of size C(i) 

in the same direction will be taken. This swim is continued as long as it continues to reduce the cost (up to 

Ns). In other words, the cell will tend to continue to spread if it moves towards gradually favorable 

environments. 
b) Swarming mechanism: 

The bacteria release an attractant so that they should swarm together. The bacterium also repels 

nearby ones in the sense it will be not other one at the same location. The combined cell-to-cell attraction and 

repelling effectscan be modeled as [25]: 
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Here P is the number of parameters to be optimized and θ=[θ1....θP]T is a point on the optimization 

domain and θi
m s the mth component of the ith bacterium position θi. datt is the depth of the attractant released 

by a cell, and ωatt is a measure of the width of the attractant signal. hrep and ωrep represent the same quantities 

but for the repels effects. 

c) Reproduction: 

When chemotactic steps Nc are attained, a reproduction step is taken with till Nre. The half of 

bacteria having poor fitness (are not “healthy” and thus unlikely to reproduce) die and the second remaining 

bacteria Sr= S/2 are allowed to reproduce (split in two). 

d) Elimination and dispersal: 

The bacteria population is subjected to elimination-dispersal with probability factor (Ped). These 
events (with Ned times) take place after several generations of reproduction. This process may disturb the 

algorithm but it prevents the population to be stuck on local minima.  

 

3.2.3.Hybrid bacteria foraging with particla swarm optimization procedure (BF-PSO) 
Our technique is based on the initial bacteria foraging algorithm (BF) which is enhanced by the PSO 

technique. This approach was proposed firstly by [26] and subsequently taken up by [27]. The initial 

algorithm relies on the random generation of the bacteria tumbling direction vector (Δm(i)), this maneuver 

may lead in a delay of the algorithm to converge toward the global solution.  

The PSO technique is exploited by its peculiarity of using individual and social information, so the 

best-local position and the best-global position of each bacterium will influence the random direction of the 

tumbling activities of the bacteria.  
Thus, during the process of chemotaxis loop, the vector of the tumble direction is updated using: 

 

1 1 lbest current 2 2 gbest current

m

V w.V C .r ( ) C .r ( )

(i) V

        

   (13) 

 

As is shown in Figure 2, a PSO-optimized new direction Δm(i) is incorporated in the BF technique 

(Implicit subscribes are intentionally dropped). 

 

 

4. RESULTS AND DISCUSSION  

The performances of the presented method are tested within Matlab/Simulink. Real parameters are 

used in the simulations, they were obtained by identification procedure in the laboratory of three-phase Y 

connected squirrel cage induction motor, 1 kW, 2880 rpm, 220/380V, 4/2.3 A, 50Hz [28]. 

The performance index (or fitness) used in this study is the Integral of the Time multiplied by the 

Squared Error (ITSE) with an addition of the system overshoot according to the following equation: 

 

2

J .ITSE .overshoot

te (t)dt .overshoot

  

  
 (14) 

 

Where e(t) is the error between the reference and the desired speed:  

 
* *e(t) (t) (t) N (t) N(t)     (15) 

 

The calculated gains' values with the conventional PI method are;  Kpw = 1.5, Kiw = 0.1. The optimal 
values obtained by the BF-PSO algorithm are: Kpw = 12.6822, Kiw = 0.1473. 

Figure 3 presents speed tracking curves between reference (N*) and actual rotor speed (N) for both 

PI and BF-PSO methods. Initially, a step command with 2800 rpm is applied without load, and at t=0.6 s the 

machine is fully loaded with TL= 3.2 N.m. Then, a negative step reference (-2800 rpm) is applied at t=1s. 

The zoom-in shows clearly the time response and the disturbance rejection. As we can observe, the speeds 

reach their references at the same time, but in the case of classic PI regulation, the response shows an 
important overshoot (5.3%) compared to BF-PSO (0.71%), besides the error in the steady-state.  

 

 



          ISSN:2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 22, No. 2, May 2021 :  660 - 669 

666 

  
 

Figure 2. Hybrid bacteria foraging particle swarm optimization algorithm flowchart 

 

 

We also note that the speed drops due to the application of the load torque and presents a consistent 

static error in steady-state, whereas with the BF-PSO, the system remains stable. Consequently, the rejection 

of the disturbance has been improved significantly. In Figure 4, one can observe that the torque presents 
slightly more ripples when compared with the PI method, but both show the same dynamic.  
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The flux trajectories exhibit the same curves as shown in Figure 5.Finally, in Figure 6 are shown 

comparison results obtained with different indices wich are mostly used in controllers tuning via optimization 

as; ITAE, ISE, IAEgiven in (16): 

 
2

ISE e dt

IAE e dt

ITAE t e dt












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





 (16) 

 

The curves of speed indicate that the response times are similar, however, the behavior concerning 

disturbances is clearly better with the adopted index, both when the regulated speed drops and when the time 

in which the speed returns to its reference. 

 
 

  
 

Figure 3. Speed tracking test with conventional PI and BF-PSO algorithm 

 

 

 
 

Figure 4. Torque response with PI and BF-PSO 

algorithm 

 

 

 
 

Figure 5. Flux trajectories 

  
 

Figure 6. Speed response with different indices used with BF-PSO algorithm 
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5. CONCLUSION 

The performance of DTC with classic PI was tested and compared with the BF-PSO tuned PI 

controllers. The results have shown that the presented method improves the system stability and robustness 

against disturbance. The simulation results have shown that with BF-PSO tuned PI, the system's presents 

good dynamic and more effectiveness in disturbance rejection, with remarkably less overshoot and steady-

state error. Results reveal the efficiency of the BF-PSO algorithm to achieve optimal solutions and 

contribution in the improvement of induction motor drive with DTC in different operating phases (starting, 

transient, steady-state evaluation). 
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