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 Decision making strategies for resources available in macro/micro scales 

have long been a critical argument. Among existing methods to address such 
a mixed-binary optimization model, Lagrangian relaxation (LR) found 
universal acceptance by many utilities, offering a fast and accurate answer. 
This paper aims at retrofitting the solution way of LR algorithm by dint of 
meta-heuristic cuckoo search algorithm (CSA). When integrating CSA into 
LR mechanism, a tighter duality gap is catered, representing more accurate 
feasible solution. The key performance of CSA exhibits a head start over 
other classical methods such as gradient search (GS) and Newton Raphson 
(NR) when dealt with the relative duality gap closure in LR procedure. 

Further, electric vehicles (EV) with its associated hard constraints are 
encompassed into model to imperiling the proposed CSA-LR if encountered 
with nonlinear fluctuation of duality gap. Simulation results show that the 
proposed CSA-LR model outperforms the solution quality with/without EV 
as compared with conventional NR-LR method.   
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1. INTRODUCTION  

An electric power system is consisting of a big number of generating units. Enough number of units 

must be committed (switched-ON) to meet the electricity demand. In this sense, finding the best set  

(cost-effective) of generating units to start-up is known as unit commitment (UC) process. As a result, UC 

builds an optimization problem whose objective is to minimize production costs for all generating units 

subject to a number of temporal and operational constraints for each individual generation unit and in couple 

with other units [1-7].  
Smart grid development in all levels of generation, transmission and distribution, has resulted in a 

complex optimal operation of the system. For instance, large arrival of electric vehicle (EV) into the 

transportation system complicates economic operation of the power system [8]. Such dynamic vehicle 

introduces dual operational modes of charging and discharging. However, it offers a dichotomy in optimal 

operation of the system. It is adventurous if EVs can be scheduled to connect and disconnect to the power 

grid in suitable time and optimal place to improve the security of the power grids [9-12]. 

As a result, the old-fashioned and conventional UC algorithm as a start-up scheduler can be 

retrofitted to address new challenges that recently raised by EVs. UC may coordinate geographically located 
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thermal units with dynamic EVs to reconcile electricity demand in premise of satisfying system security 

requirements. To further flourish the UC solution, the model can be enhanced by adding PV/battery 

generations into the final schedule. In this fashion, UC redresses the schedule for conventional units, EVs, 

and PV/battery in a cost-saving and environmental-friendly way [9]. 

To solve the resultant UC optimization problem, a variety of techniques reported in technical 

literature. However, in such pool of possible solutions, few have received the industry approval on  

large-scale UC implementation. Nevertheless, the most appreciated techniques include priority listing (PL), 

dynamic programming (DP), Lagrangian relaxation (LR), and mixed integer programming (MIP) [13-20]. 

In the proposed project, LR technique is employed to solve the resultant UC problem. According to 

the literature survey, LR outperforms other techniques in terms of computing time and linear solution as the 
size of the problem enlarges [7, 17, 18, 21-23]. Although the LR presents many industrially-precious 

advantages, it still suffers from heuristic reasoning (try and error process) existed in tightening dual gap in 

LR convergence. Another major obstacle into broad application of LR is the incapability of LR to handle 

coupling constraints in an efficient way (time and cost overrun and unnecessary commitment of the  

units) [3, 17-19]. The proposed paper enhances UC solution using LR method while the duality gap 

fluctuation is optimized using biologically-inspired cuckoo search algorithm (CSA). In this sense, CSA finds 

the best update for the Lagrangian multiplier at each iteration. As a consequence, the executional 

performance of the UC-LR can be improved and unnecessary commitment of the units is  

avoided [6-8, 15-22]. 

It is widely proven that the UC is the most money-saving procedure in power system operation. In 

fact, UC sets a pre-dispatch start-up schedule for the in-service units in the system [10, 11]. However, it 
builds up a large-scale, nonlinear, non-differentiable, nonconvex mixed-integer mathematical programming 

problem with a complex constraint set [6, 7, 14, 15]. Having discrete decision making process that involves 

with a big number of binary variables may exacerbate the solution process or in some cases unable to reach 

the most optimal solution. Therefore, the conventional optimization techniques used to solve the economic 

dispatch problem is no longer fruitful. A number of solution approaches are proposed in the literature. 

Amongst them, the most industry-proven methods are dynamic programming (DP), Lagrangian relaxation 

(LR) and mixed-integer programming (MIP) methods [3, 4, 9, 18]. 

Lagrangian relaxation (LR) decomposes the UC problem into several subproblems [3], whereas the 

solution of each subproblem is coordinated through Lagrange multipliers. The subproblems are mainly 

solved by the DP or a network flow technique. Mixed-integer programming (MIP) technique using branch 

and cut (B&C) method is applied to the UC problem as well [3]. 

While DP is notorious for dimensionality curse, LR is well-known for linear computational 
performance that tremendous scale outruns the DP method. Nevertheless, MIP outperforms the DP and LR 

techniques by enabling direct modeling of the coupling constraints which proved cumbersome in LR model. 

Although MIP may offer better optimal solution but it is still based on approximation and linearization of the 

initial model. Compared to LR, MIP is unable to model non-linear objective and constraints. By having it 

converted into equivalent linear model will be at the expense of deteriorating feasibility [2, 4]. MIP is a 

recent in-favor solution as it utilizes a super-optimizer of ILOG IBM CPLEX that uses branch and bound 

with Cutting plane method (BB&C) [4-10]. 

Comparison over these industry-size techniques has manifested that the LR technique still offers 

satisfactory solution (high-speed) although suffering from large fluctuation of duality gap and its 

uncontrollability at the premise of system-wise constraints. As a remedy, stochastic search algorithm such as 

genetic algorithm (GA), particle swarm optimization (PSO) can provide stochastic way of non-linear 
optimization which is inspired by biologically advancement in the nature. The advantages of such techniques 

was cited in many technical literatures especially for complex mathematical equations for a nonlinear 

problem is a formidable task [15, 16, 19-23].  

Among several meta-heuristic algorithms, cuckoo search algorithm (CSA) recently emerged and 

suggests straightforward and user-friendly implementation mechanism as opposed to many well-known 

algorithms. Thus, integration of CSA into LR solution paradigm ought to improve the overall performance 

both in computational sense of large-scale problems with solution optimality and minimization of operation 

costs [20-27]. 

The objective of this paper is to refine better quality solution of LR with the stochastic search engine 

of CSA. To end this, CSA replaces NR engines in LR algorithm which seemingly presented an inferior 

performance in utility-size number of units. To examine the strengths of the proposed model, electric vehicle 

(EV) operational constraints are added into the legacy model. The resultant model will be tested on  
New-England 39-bus (10-unit) system to show the efficacy of the proposed model. 
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2. MATHEMATICAL EQUATIONS  

The generic form of LR model is illustrated in (1-3). The objective is to minimizing total cost 

function, 𝑓(𝑥), subject to a set of equality𝑔𝑖(𝑥) and inequality ℎ𝑖(𝑥) constraints [2, 3].  

 

𝑚𝑖𝑛
𝑥

𝑓(𝑥)   (1) 

  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   

  

𝑔𝑖(𝑥) = 0        ∀ 𝑖 = 1, … , 𝑚  (2) 

  

ℎ𝑖(𝑥) ≤ 0     ∀𝑖 = 1, … , 𝑚 (3) 

  

𝑥 ∈ 𝑋  

 

The LR model solve UC problem by temporarily relaxing coupling constraints and adds them up 

into the objective matrix by using dual optimization procedure. It can readily be done through the adjustment 

of Lagrange multiplier (LM) , denoted as λ to obtain constrained optimum. The (4) represents the Lagrangian 

function in respect with the approximation of original problem (1-3). Lagrangian multipliers are ought to 

penalize violations of decoupling constraints in primal solution by adding extra cost on the objective value, 

which is also the dual solution [3]. 

 

Φ(λ,µ)=min 
𝑥

{𝑓(𝑥) + 𝜆𝑇𝑔(𝑥) + 𝜇𝑇ℎ(𝑥)} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑥 ∈ 𝑋  

(4) 

 

Φ(λ, µ) is defined as a dual cost function. To yield a lower bound primal problem feasible solution, 

one should maximize Φ with respect to λ and µ as represented in (4). 
 

𝑞∗(𝜆) = max
λ,µ

Φ(λ, µ)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  µ ≥ 0  

(5) 

 

The lagrange relaxation procedure solves the unit commitment problem by a duality gap in (21). The 

J* is obtained by performing economic dispatch on committed units to procure optimal generation output in 

terms of cost. The parameter q* is obtained by calculating the minimum lagrange function as shown in (22) 

& (23) [2]. 

 

RDG= 
𝐽∗−𝑞∗

𝑞∗  (6) 

 

The status of generation units can be determined using (1-5) where single-unit dynamic 

programming approach is taken up finding commitment (0/1 status) of each unit throughout scheduling 

horizons, eg. 24 hours.  

The relative duality gap (RDG) as stated in (6) plays a crucial role in LR algorithm, it controls the 

accuracy of the solution by closing the gap between primal and dual problem solutions as in (6). Following 
the LR solution mechanism, the Lagrange multiplier (LM), λ, required updating each iteration using (7) and 

with fresh LM the algorithm repeats till the pre-specified RDG is met. The α parameter accelerates 

convergence speed while closing the relative duality gap between two-end solutions [3].  

 

𝜆𝑡+1 = 𝜆𝑡 + [
𝑑

𝑑𝜆
𝑞(𝜆)]𝛼  (7) 

 

2.1.  Objective function 

The generation scheduling problem using LR algorithm was stated in a general form. The resultant 

problem is a large-scale, mixed-integer, non-linear, non-convex, hard optimization problem. Detailed 

problem model in terms of objective function and its associated constraints can be cast as [2-10]: 

 

min F(x) =
𝑃𝑖,𝐼𝑖

{∑ ∑ (𝑎𝑃𝑖
2(𝑡) + 𝑏𝑃𝑖(𝑡) + 𝑐)𝐼𝑖(𝑡) + ∑ ∑ 𝑆𝑈𝑖(𝑡). 𝐼𝑖(𝑡)𝑁𝐺

𝑖
𝑁𝑇
𝑡

𝑁𝐺
𝑖=1

𝑁𝑇
𝑡=1 }    (8) 

 

The power-balance constraint: 
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∑ 𝑃𝑖(𝑡). 𝐼𝑖(𝑡) + 𝑃𝑙𝑜𝑠𝑠 + ∑ 𝑃𝑣(𝑡)𝑣 =𝑁𝐺
𝑖 𝑃𝑑(𝑡)       (9) 

 

Spinning reserve constraint: 

 

∑ 𝑃𝑖
𝑁𝐺
𝑖=1 (𝑡). 𝐼𝑖(𝑡) ≥ 𝑆𝑅𝑖(𝑡)        (10) 

 

Unit limit constraint: 

 

𝑃𝑖(𝑡). 𝐼𝑖(𝑡) ≤ 𝑃𝑖(𝑡) ≤ 𝑃𝑖(𝑡). 𝐼𝑖(𝑡)        (11) 

 

EV constraints: 

 

𝑃𝑣(𝑡) =  𝑃𝑑𝑐(𝑡) − 𝑃𝑐(𝑡) (12) 

  

𝐼𝑑𝑐(𝑡) + 𝐼𝑐(𝑡) = 1 (13) 

  

𝑃𝑑𝑐(𝑡). 𝐼𝑑𝑐(𝑡) ≤ 𝑃𝑑𝑐(𝑡) ≤ 𝑃𝑑𝑐(𝑡). 𝐼𝑑𝑐(𝑡) (14) 

  

𝑃𝑐(𝑡). 𝐼𝑐(𝑡) ≤ 𝑃𝑐(𝑡) ≤ 𝑃𝑐(𝑡). 𝐼𝑐(𝑡) (15) 

 

Status: 
 

𝐼𝑖(𝑡), 𝐼𝑐(𝑡), 𝐼𝑑𝑐(𝑡) ∈ {0,1} (16) 

 

Mixed-binary Unit commitment problem based on LR approach which in fact embrace decoupling 

constraints is formulated in (8-16). The object is to minimize the total quadratic cost of power production 

including a, b, c as the cost coefficients and the main variable which is 𝑃𝑖 (𝑡) plus with start-up cost of the 

unit 𝑆𝑈𝑖(𝑡) for all the generators (NG) over the study period (T) [1-5]. The production cost of a unit is 

approximated in a quadratic cost function with its coefficients.  

The power balance equation is represented in (9) which alludes that the sum of all generation from 

thermal units, 𝑃𝑖(𝑡), and power injection/withdrawal from electric vehicles, 𝑃𝑣(𝑡), ought to be seamlessly 

equal to the total demand of the system, 𝑃𝑑(𝑡), considering transmission losses, 𝑃𝑙𝑜𝑠𝑠 , at each scheduling 

period. The power balance constraint in (9) is referred to as a hard and system-wise constraint which requires 

one to schedule all the generation units simultaneously in every time period. That is, the constraint is 

sometimes called a coupling constraint which engages all the unit in scheduling process. This however 
introduces a challenging task for LR algorithm to satisfy certain accuracy level while closing the RDG gap.  

The constraint (10) ensures one that there will be enough spinning reserve,𝑆𝑅𝑖(𝑡), in the system 

when generations meet the loads to hold a certain reliability margin during operation. The generator’s power 

output is controlled to fall in the capability range of the unit within its minimum and maximum deliverable 

power as in (11).  

As a part of the prime intent of this paper, electric vehicle operations are incorporated into the UC 

model to further jeopardize LR solution mechanism when it comes to an increased number of coupling 

constraints stated in (12-15). The power delivered/withdrawn (+/-) to/from the grid is given in (12). As of the 

dual mode of EV fleets when connected to the grid, in (13) stresses that the charging and discharging 

operational mode of EV are mutually exclusive. The constraints (14) and (15) are account for charging and 

discharging limits of each EV fleet to be held when in service [8]. The binary variables, (16), of 𝐼𝑖(𝑡), 𝐼𝑐(𝑡),
𝐼𝑑𝑐(𝑡) represent the status of the thermal unit (0/1) and charging and discharging of EV fleets in seek of 

minimized total cost of operations at each time interval as presented in (8).  

 

 

3. CUCKOO SEARCH ALGORITHM  

Cuckoo search (CS) is a metaheuristic search algorithm coined by Yang and Deb [25, 26]. Its 

intensification and diversification methods were formulated based on the fascinating brood parasitism of 

some species of cuckoos to solve both convex and non-convex problems. Following Figure 1 at which the 

overall procedure of LR-UC is depicted, as one can see in Figure 2 as well, Cuckoos lay their eggs in the 

nests of the other host birds and may destroy the hosts’ eggs to increase the hatching probability of their own 
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eggs. However, detection of alien eggs by the host birds will result in extruding the identified dissimilar egg 

from the nest or leaving the nest and construct fresh nest. In order to decrease the possibility of their eggs for 

being abandoned, some cuckoo species mimicry the color and pattern of the few chosen host species. Yet, 

some species of cuckoos are the temperate migrators where they inhabit wide range of habitat to maximize 

the potential brood host and resolve the food limitation from previous habitat. The detailed mathematical 

formulation is given in [24-27]. 
 

 

 
 

Figure 1. Flowchat of LR-UC-CSA 
 

 

𝑋 = [𝑋1, 𝑋2, … , 𝑋𝑁𝑃]𝑇  (17) 
  

𝑋𝑖 = [𝑃𝑖1, 𝑃𝑖2, … , 𝑃𝑖𝑗, … , 𝑃𝑖𝑁]  (18) 

  

𝑃𝑖𝑗 = 𝑃𝑗
𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑1 ∗ (𝑃𝑗

𝑚𝑎𝑥 − 𝑃𝑗
𝑚𝑖𝑛)  (19) 

  

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑏𝑒𝑠𝑡𝑖 + 𝛼 × 𝑟𝑎𝑛𝑑2 × ∆𝑋𝑖

𝑛𝑒𝑤, 𝛼 > 0  (20) 

  

∆𝑋𝑖
𝑛𝑒𝑤 = 𝑣 ×

𝜎𝑥(𝛽)

𝜎𝑦(𝛽)
× (𝑋𝑏𝑒𝑠𝑡𝑖 − 𝐺𝑏𝑒𝑠𝑡)  

(21) 

  

𝑣 = 𝑟𝑎𝑛𝑑𝑥/|𝑟𝑎𝑛𝑑𝑦|1/𝛽  (22) 

  

𝜎𝑥(𝛽) = [τ(1 + β) × sin (
𝜋𝛽

2
) /𝜏 (

1+𝛽

2
) × 𝛽 × 2

𝛽−1

2 ]
1/𝛽

  
 

(23) 
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𝜎𝑦(𝛽) = 1  (24) 

  

0.3 ≤ 𝛽 ≤ 1.99  (25) 

  

𝑋𝑖
𝑑𝑖𝑠 = 𝑋𝑏𝑒𝑠𝑡𝑖 + 𝐾 × ∆𝑋𝑖

𝑑𝑖𝑠  (26) 

  

∆𝑋𝑖
𝑑𝑖𝑠 = 𝑟𝑎𝑛𝑑3 × [𝑟𝑎𝑛𝑑𝑝1(𝑋𝑏𝑒𝑠𝑡𝑖) − 𝑟𝑎𝑛𝑑𝑝2(𝑋𝑏𝑒𝑠𝑡𝑖)]  (27) 

 

In (17-20) represent the formulations for variables used in cuckoo search mechanism [24-27] and 

how they evolve using the Lévy flights via Mantegna algorithm is shown in (21-27) which attempts to 
estimate the best jump from the current position to approach the most optimal solution by adjusting the 

deviations of the next levy flight for cuckoos. Each egg in a nest represents a solution, and a cuckoo egg 

represents a new solution. The aim is to use the new and potentially better solutions (cuckoos) to replace an 

inferior solution in the nest. In this paper, each nest has one egg (solution). The algorithm can be extended to 

more complicated cases in which each nest has multiple eggs representing a set of solutions. The algorithm 

for the improved LR-UC tied with CSA is shown in Figure 1. 

The prime aim is to find the best set of generator which can meet the load demand throughout the 

scheduling period at the premise of honoring system operational constraints. As can be seen in Figure 1, the 

CSA is integrated into the LR solution mechanism when the duality gap between the primal and dual solution 

are ought to be met. CSA nonlinearly finds a best path for gap evolution so that less fluctuation is seen as the 

LR-UC progresses [23]. Therefore, CSA challenge the process and offers an optimal way to curb the 

vaporized gap development. As a result, solution quality is enhanced. 
 
 

 
 

Figure 2. CSA graphical representation 

 
 

4. SIMULATION RESULTS  

In this section, two cases are analyzed to summarize the effectiveness of using CSA to solve UC-LR 

problem. The IEEE 39-bus test system is taken to examine the proposed CSA-UC-LR algorithm in an 

efficient way. IEEE 39-bus standard test system contains 49 buses, 32 transmission lines, 24 transformers and 

10 generation unit which supplies Hourly power demand as given in Table 1. Studies are made on two cases 

as stated below. First case mainly focused on solving the feasibility solutions of LR in UC by integrating 

gradient search (GS) method and cuckoo search algorithm (CSA) respectively with and without electric 

vehicle (EV). 

On the other hand, second case concentrated on the optimal generation of units in ED using Newton 

Raphson’s (NR) method and CSA. A total of ten thermal generators are run for both case in the time frame of 
24-hours to testify the results. EV fleets are added into the system in a way that may represent its mobile 

charge/discharge capabilities. To end this, Figure 3 illustrates the time that EV fleets connects and discharge 

its power to the grid within hours 2-6 and charges back their batteries in hours of 8-11 and 20-22. Since the 

Initial Cuckoo

New Cuckoo

Nest of 
Host Bird

Fly over goal 
habitat

Identified by 
Host Bird

Group 1

Goal Habitat

New Habitat

Group 2

Group 4

ld

d

Initial Cuckoo

Initial Cuckoo

Group 3

ld

d
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impact of network constraints has ignored in this model, therefore the driving pattern of EV fleets has no 

direct impact on the UC-LR solution considering EV fleets as a moveable unit. That is, the transmission 

network topology falls out of the scope of this paper. A total of 989 EVs and 788 EVs are participating in two 

discharging periods of hours 8-11 and 20-22 respectively along with 2000 EVs partaking in charging period 

of hours between 2-6.  
 

 
 

Figure 3. Comparison of different engines in UC-LR algorithm in presence of EV 
 

 

As one can witness in Table 1, LR-CSA outperforms LR-GS in term of procuring precise LM as 

well as the smallest RDG value which indicates the closeness between dual and primal values. Another word, 

the lower RDG results in the near optimal solution is procured. Nevertheless, RDG amount is germane to LM 

value and by integration of GS into LR algorithm, it suffers from instable convergence at the end of the 

process. As can be seen in Table 1, some units keep switching their status (on=1 or off=0) repeatedly. Hence, 
the program executes for an infinite number of iterations till it manually becomes fixed as shown in Table 1. 

In this table, the negative sign of RDG in LR-GS method means that the solution (total operation cost) was 

sub-optimized while the gap between dual and primal values being less than zero. It simply pinpoints that the 

cost is no longer minimized and in fact had deviated the preferred lowest cost. 

 

 

Table 1. UC-LR solution in absent of EV fleets 

T (H) PD [MW] Ploss [MW] Pload [MW] 
Generation unit schedules CSA Method GS Method 

1 2 3 4 5 6 7 8 9 10 LM RDG LM RDG 

1 200 60 260 0 0 0 0 0 0 0 1 0 1 7.538 0.011 7.800 0.022 

2 160 48 208 0 0 0 0 0 0 0 1 0 1 7.436 0.011 7.936 0.058 

3 120 36 156 0 0 0 0 0 0 0 1 0 1 7.555 0.070 7.560 0.071 

4 85 26 111 0 0 0 0 0 0 0 0 0 1 7.269 0.002 ∞ ∞ 

5 50 15 65 0 0 0 0 0 0 0 0 0 1 6.952 0.027 6.650 0.016 

6 70 21 91 0 0 0 0 0 0 0 0 0 1 7.390 0.020 7.280 0.012 

7 50 15 65 0 0 0 0 0 0 0 0 0 1 6.848 0.021 6.650 0.016 

8 85 26 111 0 0 0 0 0 0 0 0 0 1 7.379 0.005 ∞ ∞ 

9 120 36 156 0 0 0 0 0 0 0 1 0 1 7.572 0.073 7.560 0.071 

10 250 75 325 0 0 0 0 0 0 0 1 0 1 7.684 0.003 8.700 0.033 

11 480 144 624 0 0 1 1 0 0 0 1 0 1 9.644 0.081 12.480 -56.808 

12 640 192 832 0 0 1 1 0 0 1 1 0 1 9.872 0.054 14.320 -6.710 

13 850 255 1105 1 0 1 1 1 0 1 1 0 1 9.301 0.063 15.785 -8.045 

14 700 210 910 1 0 1 1 0 1 0 1 0 1 9.958 0.069 15.100 -5.319 

15 640 192 832 0 0 1 1 0 0 1 1 0 1 9.869 0.054 14.320 -6.710 

16 700 210 910 1 0 1 1 0 0 1 1 0 1 9.926 0.065 15.100 -5.319 

17 500 150 650 0 0 1 1 0 0 0 1 0 1 9.579 0.059 ∞ ∞ 

18 440 132 572 0 0 1 1 0 0 0 1 0 1 9.526 0.096 ∞ ∞ 

19 300 90 390 0 0 0 0 0 0 0 1 0 1 8.773 0.003 8.100 0.000 

20 340 102 442 0 0 0 1 0 0 0 1 0 1 9.286 0.065 9.260 0.063 

21 400 120 520 0 0 0 1 0 0 0 1 0 1 9.354 0.003 9.204 0.024 

22 470 141 611 0 0 1 1 0 0 0 1 0 1 9.533 0.076 ∞ ∞ 

23 300 90 390 0 0 0 0 0 0 0 1 0 1 8.501 0.002 8.100 0.000 

24 340 102 442 0 0 0 1 0 0 0 1 0 1 9.102 0.055 9.260 0.063 
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Case 1: Assuming 3% fixed transmission loss in the system, where total hourly load somewhat 

fluctuates by arrival of the EV fleets connected to the grid. Tables 1 and 2 show the instability of LR-GS 

solution as the load is met at every time interval. Infeasible solutions represented by infinity loops are 

occurred as an extra number of generators is required to supply the increasing load. With advent of EV fleets, 

though this can be further worsened when plugged in or out the system such that, as shown in Figure 4, EV 

fleet is treated as a system demand (red color) in the forms of negative and positive load and vice versa. 

As far as peak-load shaving is concerned, with arrival of EV fleets, the number of generators needed 

to meet the load at peak hours of operation can be reduced. Taking all into account the Tables 1 and 2 

together with Figures 4 and 5, it is intuitively conceivable that LR-CSA offers not only better UC feasible 

solution with low-discrepancy LM and tightened RDG as compared to LR-GS but it provides one with 
affordable to solve probabilistic nature of EV fleets (charging and discharging states in accord to their State 

of charge (SOC)). 

It is done through strong stochastic search engine existed in CSA solution mechanism that allows 

one to handle non-linear and random nature of the process. The capability of CSA in curbing the randomness 

of RDG closure efforts in LR technique has superbly made its broad application possible. It has long been 

argued that the LR-GS performs inferiorly and proves unreliable (infinity signs in Tables 1 and 2) as the 

number of coupling constraints increases, resulting in drastic deviations in RDG duality gap closing process. 

In this sense, LR-GS dwarfs its advantages when subject to randomness in the process. Conversely, CSA 

presents its strengths in terms handling non-linear and non-deterministic processes as the one expressed here.  

 

 

 
 

Figure 4. UC and ED solutions with and without EV 

 

 

As a salient feature of CSA plugged in LR algorithm is when the searching process barely traps in 

the local optimum as opposed to GS mechanism which seemingly somewhat handicapped to grasp a global 
extreme point. As an added value, in terms of computational time performance of the LR-CSA, through 

Figure 5, it is demonstrable that, in spite of load variation in subsequent scheduling time-intervals, for 46 

percent of the time, less than 13 seconds required to reach global final solution. However, it seems 

unattainable for LR-GS as it often locks up in local optima and it slowly trundles up to the global minima 

because it embraced a deterministic searching mechanism which relies on gradient vector (first order 

derivation) that is reluctant to deal with nonlinearity and randomness in the process. This, nonetheless, 

unequivocally reiterates the CSA procures concrete solution when integrated in LR algorithm. Instead, GS 

which merely outperforms CSA only when nonlinearity is infinitesimal and process possessed non-

deterministic nature per se. 
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Figure 5. Comparative study for generation decision support 

 

 

Table 2. The instability of LR-GS solution 

T [h] 

With EV 

CSA GS 

LM RDG LM RDG 

1 8.062 0.0318 7.83 0.0192 

2 7.787 0.0388 7.978 0.0679 

3 7.643 0.0511 7.74 0.0656 

4 7.577 0.085 ∞ ∞ 

5 7.331 0.0062 7.28 0.0042 

6 7.677 0.0877 7.5 0.0557 

7 7.345 0.0028 ∞ ∞ 

8 7.65 0.0837 7.45 0.0559 

9 7.789 0.0895 7.63 0.0673 

10 7.975 0.0049 8.724 0.0325 

11 9.55 0.074 ∞ ∞ 

12 9.541 0.0242 ∞ ∞ 

13 9.893 0.0079 ∞ ∞ 

14 9.701 0.0073 ∞ ∞ 

15 9.661 0.0171 ∞ ∞ 

16 9.684 0.0008 ∞ ∞ 

17 9.53 0.0866 ∞ ∞ 

18 9.545 0.0969 ∞ ∞ 

19 8.154 0.0004 8.07 0.003 

20 9.144 0.0523 9.38 0.0687 

21 9.157 0.0149 ∞ ∞ 

22 9.509 0.0913 ∞ ∞ 

23 8.192 0.0004 8.06 0.0002 

24 9.241 0.0585 9.32 0.0648 

 

 

A detailed characteristic of LR-CSA method is illustrated in Figure 5. One can find that LM value is 

proportional to the load power as the demand increases from 10-16 hour, the Lagrange multiplier rise up 

roughly from 7 to 10 $/MWh and in the same trend as the load decreases LM falls in the range close to the 8 

$/MWh. It should be noted that the rate of LM variation over load fluctuations is unsubstantial. Figure 5 

further shows that value of duality gap drastically fluctuated on account of stochastic process performed by 

CSA. It is a process which is purely random with a heavy-tailed step size. 

Case 2: LR-CSA is further investigated through comparison of the results with which LR-NR had 

offered based on the same test conditions (10-unit system added EV fleets). The result presented in Figure 6 

taking into account EV fleet participation in the model. 
According to Figure 6, The total production cost for LR-NR is found to be less than LR-CSA. The 

gulf between total cost of LR-CSA and its competitor LR-NR becomes wider especially during the peak 

loading periods in which additional generators required kicking on to meet the system’s demand. During 

peak hours, it can be seen in Figure 6 that total production cost of 79650.78 $ and 81270.62 $ yielded from 

NR and CSA respectively. 

From the simulation result, it turned out, the LR-NR is more cost-saving technique when solving ED 

sub-problem in UC model. It in fact, benefits from the approximation existed in NR mechanism, albeit it is 
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yet unable to curb random deviations. It evidently might trap in local minima in some cases. Hence, although 

LR-NR outpaces LR-CSA in terms of production cost but it falls behind as the number of coupling 

constraints is growing in practical utilities which makes LR-NR undesirable choice in practice.  

Furthermore, Figure 6 shows that 96 percent of time LR-NR provides cheaper solution than  

LR-CSA. The chances NR providing lower cost is 29 percent higher than when EV incorporated into the 

model. This represents that operational dynamism of EV fleets affects the LR-CSA method in finding 

optimal solution. Nevertheless, integration of EV reduced the total production cost in both methods in 

comparison to the cost without integration of EV. 

 

 

 
 

Figure 6. Production cost of LR-NR and LR-CSA methods 

 

 

5. CONCLUSION 

The unit commitment (UC) problem was solved by comparing gradient search (GS) method to cuckoo search 

algorithm (CSA) and Newton Raphson’s (NR) method to CSA respectively. When integrating CSA into LR mechanism, 

a tighter duality gap ends up, representing more accurate feasible solution. LR-CSA improves Lagrange multipliers and 
relative duality gap by offering lower primal cost. With advant of electric vehicles (EV) into model, the proposed  
CSA-LR was further challenged by nonlinear fluctuation of duality gap. Simulation results LR-CSA outperforms 
traditional LR-GS method in terms of real-world utility-size with bigger number of generators. The numerical tests and 
results exhibit the fruitful solutions for UC problem with and without electric vehicle (EV). As a future work, a detailed 
EV charging model can be added to the model and if the model became more intractable, a recently evolved metahuristic 
method such as gray wolf optimization can be introduced to the solution process.  
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