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 Bug reports contain essential information for fixing problems that occur in 

software. Many studies have proposed methods for automatic analysis of bug 

reports. One such task could affect the completion of software bug fixing, known 

as “bug dependency”. Although this problem was mentioned by many researches, 

most of them discussed about the related bugs but not really dealt with 

dependency issue in bug reports. One possible solution used for addressing this 

issue is to assemble all relevant/dependent bug reports together before analysis of 

the next processing stages. This study presents a method of assembling dependent 

bug reports. The main mechanism is called “threshold-based similarity analysis”, 

and the three similarity techniques of cosine similarity (CS) multi aspect TF 

(MATF), and BM25 are compared with feedback, precision and likelihood value. 

As the BM25 with the threshold as 0.5 gives the best results, it was used to 

compare with the state of the art method. The results show that our method 

increases precision and likelihood values by 12% and 12.4% respectively. 

Therefore, our results can be used to encourage developers to recognize all 

dependent bugs in the same problem domain. 
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1. INTRODUCTION 

Locating and tracking bugs in large open-source software systems are never an easy process, that 

involves gathering bug reports from global end-users. To facilitate report gathering, many bug tracking 

systems (BTS) such as bugzilla, trace, and jira have been developed [1]-[7]. Large amounts of data are 

submitted daily to these BTS as bug reports. 

The incidence of bug reports has continuously increase, with the size of bug report repositories 

mushrooming, resulting in the necessity for automatic data handling and analysis. Therefore, many studies on 

bug report have been proposed. In literature review, bug report studies can be divided into three major areas 

as bug report optimization, bug report triage and bug fixing [7]. The first area, called bug report optimization, 

aims to improve quality of bug reports and reduce the amount of erroneous information. It can be classified 

into three tasks as content optimization [8], [9], misclassification [10]-[14] and severity prediction [15]-[23]. 

The second area is bug report triage. This study area concerns duplicated bug detection [3], [5], [6], [24]-

[27], prioritization [28], [29], and suitable developer assignment tasks [30]-[32]. Lastly, bug fixing can also 

be classified into three main tasks as bug localization [33]-[35], recovering links between bug reports and 

changes in files or source code [36]-[38], and prediction of bug fixing time [2], [39], [40]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Besides the aforementioned tasks, other interesting bug report topics remain. One such task could 

affect the completion of software bug fixing, recognized as the “bug dependency issue” [2], [4]. This issue 

can be described by a situation in which an unfixed bug “a” affects bug “b”. That is, bug “b” continues to 

occur despite it is being fixed if bug “a” is not yet completely fixed. Despite this issue has been described by 

various authors [2]-[4], [6], it has not yet been earnestly studied. This may be because the performance 

improvements are still required for bug report misclassification, severity and priority prediction, bug 

duplicated detection, bug localization, and bug fixing tasks [7]. Nonetheless, the bug dependency issue 

should be resolved simultaneously along with the aforementioned tasks in order to complete the bug fixing 

process. 

From our perspective, a potential solution for handling the bug dependency issue is to assemble 

dependent bug reports into the same group. This is because this solution may help developer teams to identify 

the overall picture the problems from that group. As a result, this could provide opportunities to further fix 

those software bugs completely. 

Unfortunately, assigning related dependent bug reports with identical problems into the same group 

is currently handcrafted analysis done by bug triagers [4] who are software experts [41]. Bug triagers begin 

this process by identifying the main bug report referred to as the “meta-bug report” [4]. The meta-bug report 

is used as the center point and utilized to find bug reports that regard the same problem domain found in the 

content theme of the center point [4]. Those relevant bug reports are then grouped into the same cluster, 

referred to as “dependencies” [42]. When this process is manually performed, it becomes a time-consuming 

process. 

After literature review, it was found that the closest study related to automatic bug dependency 

analysis was proposed by Rocha et al. [43], [44]. They presented a method for recommending similar bug 

reports to the report under consideration. Their proposed method may help the developer team to recognize 

bug reports that should also be considered. This method was used as a main mechanism in a system, called 

NextBug, that was used to find similar bug reports for recommendation. However, this system recommended 

only a certain number of retrieved bug reports for each analysis because they used the maximum number of 

retrieved bug reports as 1 to 5. As a result, the overall picture of a problem point in the software might be 

overlooked since all dependent or similar bug reports were not retrieved simultaneously. This might result in 

an incomplete fix of all bugs found in the considered problem point and some bugs may still occur. 

Consequently, handling the problem of bug dependency is a major challenge in this study. If the 

overall picture of the software problem could be captured simultaneously, then this could lead to an 

improvement in bug fixing. Therefore, this work proposes a method for automatically assembling dependent 

bug reports to assist the developer team when considering and analyzing all bug reports concurrently. A 

method of assembling dependent bug reports is proposed, called “threshold-based similarity analysis”. Two 

feature types namely unigram and unigram+CamelCase, and three similarity techniques namely cosine 

similarity (CS), multi aspect TF (MATF), and BM25 were compared. Finally, the best model from our 

proposed method is also selected and compared with the state-of-the-art method proposed by Rocha et al. 

[43], [44]. The article is organized as follows. In Section 2, it is the proposed method. The experimental 

results and discussion are presented in Section 3. Finally, the conclusion is in Section 4. 

 

 

2. RESEARCH METHOD 

An overview of the proposed method is shown as Figure 1. Firstly, the Firefox bug reports were 

collected from the Mozilla bug tracking system. Later, those bug reports were transformed into the pre-

processing stage to identify their features. In the next stage, they were represented in the form of a vector 

space model (VSM), and their features were weighted using a term weighting scheme. Next, the bug reports 

formatted with the VSM were assembled as a set of dependent bug reports that is related to each meta-bug 

report. The proposed method was called “threshold-based similarity analysis”, where the threshold value is 

used as a criterion to make decisions of similarity between bug reports and meta-bug reports. After analyzing 

the results in the evaluation stage, the most appropriate model was selected and compared with the state-of-

the-art method proposed by Rocha et al. [43], [44]. 

 

2.1.   Dataset collection 

The dataset used here was gathered from Bugzilla, while bug reports relating to Mozilla Firefox 

were downloaded between 1 September and 30 November 2019. The dataset consisted of 22,000 bug reports. 

However, the dataset used in this study contained 11,059 reports, consisting of 478 meta-bug reports, and 

10,581 bug dependency with meta-bug reports. It is noted that only 478 meta-bug reports were used because 

the other meta-bug reports had dependent bug reports with fewer than two bug reports and were therefore 

ignored. Here, all bug report statuses [7], [45] except unconfirmed status are used for our experiment because 
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these were confirmed by bug triagers, software developers, and software testers as “real” bug reports [7], 

[40], [45], [46]. A bug report example can be presented as Figure 2. 

 

 

 
 

Figure 1. Overview of the proposed method 

 

 

 
 

Figure 2. An example of bug reports in the XML format 

 

 

Generally, a bug report consists of three elementary parts namely summary, description, and 

discussion. The summary is the title of the bug report, while the description contains details of each particular 

bug report. The discussion contains information concerning mentions or comments on that particular bug 

report submitted by other end-users. However, numerous studies related to bug reports deploy only the 

summary because this part contains less noise [3], [14], [47]. Therefore, here, we also investigated only the 

summary part. It is also noted that each bug report contains its labels representing its meta-bug reports. Then, 

one bug report can be in many meta-bug reports. In addition, a meta-bug report can be a dependent bug 

report in others meta-bug reports. Figure 3 shows an example in our dataset. Finally, this dataset was used in 

both the proposed and compared methods, and these were set in the same environment. 
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Figure 3. A meta-bug report example and its dependent bug reports 

 

 

2.2.   Bug report pre-processing 

The first stage of bug report pre-processing is text tokenization. This process separates text as tokens [48] 

that in this study are called “words”. Bug report features (or words) used here are unigram and CamelCase. 

Unigram means a single word, while CamelCase [10], [13], [33]-[35] (also referred to as Snakecase or 

Compound words) is to write a word by using two words or abbreviations together to yield a new meaning with 

no punctuation and intervening spaces. Some CamelCase words often begin with a capital letter or use the 

capital letter in the middle of words. Some examples of CamelCase are “browser_views” and “UrlBar”. Before 

using CamelCase words as features, these words are split into single words [10], [13], [33]-[35]. For examples, 

CamelCase words such as “browser_views” and “UrlBar” can be split as “browser”, “views”, “Url”, and 

“Bar”, respectively. Finally, we use both the original CamelCase words and their single words as features. By 

doing this, it seems to expand the bug report features. 

Unigram and CamelCase are popularly used in bug report studies because a unigram is simple to 

extract from a bug report, while CamelCase can indicate the specificity of the software [10], [12], [13], [15]-

[17], [19], [33]-[35], [49], [50]. Two different types of features are used to obtain the most satisfactory 

results, namely unigram and unigram+CamelCase. After tokenizing text to words, the stop words are 

removed. This is followed by the stemming process. In this case, the Snowball stemmer is utilized to reduce 

inflected words to their base or root form, called ‘word stem’ [51]. An example of bug report features after 

pre-processing can be shown as Table 1. 

 

 

Table 1. Example of bug report features after pre-processing stage 
Input Bug Report Summary Part Accessibility label for Search Engine AutoComplete item is wrong 

Output 
Unigram accessibl/label/search/engine/autocomplet/item/wrong 

Unigram+Camelcase accessibl/label/search/engine/autocomplet/item/wrong/autocomplet/auto/complete 

 

 

2.3.   Bug report representation and term weighting 

After the meta-bug reports and the bug reports are pre-processed, they are represented with the 

format of VSM. Simply speaking, this VSM becomes word vectors of the meta-bug reports and the bug 

reports. In general, each term that occurs in the VSM should include its weight. The term weighting scheme 

used in this study is term frequency (𝑡𝑓), where the local weight designates the significance of a term within 

the overall bug report. Antoniol et al. [10], and Jalbert and Weimer [3] mention that this weighting scheme is 

sufficiently satisfactory for the bug report study area. The 𝑡𝑓 formula can be: 

 

𝑡𝑓𝑡,𝑑 = 𝑙𝑜𝑔(1 + 𝑓𝑡,𝑑) (1) 

 

where 𝑓𝑡,𝑑 is the number of times that term t appears in bug report, denoted as 𝑑. 

It is noted that the VSM with 𝑡𝑓 weight is used in the case of assembling dependent bug reports by 

the CS only. However, if assembling dependent bug reports by BM25 or MATF, these techniques do not 

require the VSM with 𝑡𝑓 weight, but they instead require the VSM with the raw frequency of each term. 
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2.4.   Assembling of dependent bug reports 

The similarity analysis is a technique that is often used in the area of bug report studies. By using 

this technique alone, it can cause high false negative rate because it tends to return the irrelevant bug reports 

[24]. Previous studies in this area [24], [43], [44] have shown that a threshold-based approach for similarity 

analysis can improve the similarity analysis performance. However, those works manually defined a fixed 

number as a threshold value for bug report analysis. By doing this, it might lead to have an improper 

threshold. Therefore, this study proposes a method, called “threshold-based similarity analysis”, to assemble 

the bug reports to the related meta-bug report. In general, most studies in this area often utilize CS as the 

similarity analysis technique. However, the CS does not work efficiently with nominal data [52]. Then, the 

summary part of the bug report that is used in this study is quite small. Consequently, the CS might return 

unsatisfactory results for our study due to its small dataset. 

As mentioned above, this study performed the threshold-based similarity analysis with three 

similarity techniques, namely CS, MATF, and BM25. This is because it was necessary to have the most 

appropriate mechanism to estimate the similarity between the meta-bug reports and all the bug reports. The 

detail of each similarity technique is described. Then the paper describes the detail of our proposed method of 

dependent bug report assemblage. 
 

2.4.1. Cosine similarity approach for text similarity 

The CS has been widely used for bug localization and bug duplication detection [24], [33]-[35]. 

Therefore, we also applied this similarity technique to assemble the dependent bug reports. The CS formula is: 
 

𝑠𝑖𝑚𝑐𝑜𝑠(𝜃)(𝑉1, 𝑉2) =
𝑣1 ⋅ 𝑣2

‖𝑣1‖‖𝑣2‖
 

(2) 
 

where 𝑉1 and 𝑉2 are the term vectors of a pairwise between the particular meta-bug report and bug reports in 

the dataset. The similarity result should be close to 1 if both reports are similar. 
 

2.4.2. MATF approach for text similarity 

MATF is a technique to determine the similarity between documents, and was proposed by J.H. Paik 

[53] in 2013. This technique may aid handling problem of document length difference, where this problem 

affects the document ranking. This technique was designed and developed to focus on both short and long 

documents. Simply, although lengthy documents in a collection favor retrieving and ranking documents, 

shorter documents are also respected. In this study, the document refers to a bug report. 

The MATF similarity combines two main variables: term frequency factors (TFF) and term 

discrimination factor (TDF). The MATF similarity is: 
 

𝑀𝐴𝑇𝐹(𝑄, 𝐷) =
∑ 𝑇𝐹𝐹(𝑞𝑖 , 𝐷) × 𝑇𝐷𝐹(𝑞𝑖 , 𝐶)

|𝑄|
𝑖=1

∑ 𝑇𝐷𝐹(𝑞𝑖 , 𝐶)
|𝑄|
𝑖=1

 
(3) 

 

in theory, TFF combines two 𝑡𝑓 aspects: relative the intra-document (RITF); and length regularized TF 

(LRTF). The RITF is a value measured by considering term frequency, denoted as 𝑡𝑓(𝑞𝑖 , 𝐷), relative to the 

average tf of the document, denoted as 𝐴𝑣𝑔. 𝑡𝑓(𝐷). Therefore, the RITF formula is: 
 

𝑅𝐼𝑇𝐹(𝑞𝑖 , 𝐷) =
𝑙𝑜𝑔2(1 + 𝑡𝑓(𝑞𝑖 , 𝐷))

𝑙𝑜𝑔2(1 + 𝐴𝑣𝑔. 𝑡𝑓(𝑞𝑖 , 𝐷))
 

(4) 
 

meanwhile, LRTF is a value that normalizes the 𝑡𝑓 by quantifying terms that are present in a document. The 

LRTF can be: 
 

𝐿𝑅𝑇𝐹 = (𝑞𝑖 , 𝐷) = 𝑡𝑓(𝑞𝑖 , 𝐷) × 𝑙𝑜𝑔2 (1 +
𝐴𝐷𝐿(𝐶)

𝑙𝑒𝑛(𝐷)
) 

(5) 
 

where 𝐴𝐷𝐿(𝐶) is the average document length of the collection, while 𝑙𝑒𝑛(𝐷) is the document length 𝐷. 

After obtaining the values of RITF and LRTF, those values will be normalized by following 

function [54], [55]. 
 

𝑓(𝑥) = 𝑥/(1 + 𝑥) (6) 
 

This function normalizes the values of RITF and LRTF upper bound to 1 [54], [55]. Finally, the 

formulas of RITF and LRTF should be: 
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𝐵𝑅𝐼𝑇𝐹(𝑞𝑖 , 𝐷) =
𝑅𝐼𝑇𝐹(𝑞𝑖 , 𝐷)

1 + 𝑅𝐼𝑇𝐹(𝑞𝑖 , 𝐷)
 

(7) 

  

𝐵𝐿𝑅𝑇𝐹(𝑞𝑖 , 𝐷) =
𝐿𝑅𝑇𝐹(𝑞𝑖 , 𝐷)

1 + 𝐿𝑅𝑇𝐹(𝑞𝑖 , 𝐷)
 

(8) 

 

consequently, the formula of TFF can be: 

 

𝑇𝐹𝐹(𝑞𝑖 , 𝐷) = 𝑤 × 𝐵𝑅𝐼𝑇𝐹(𝑞𝑖 , 𝐷) + (1 − 𝑤) × 𝐵𝐿𝑅𝑇𝐹(𝑞𝑖 , 𝐷) (9) 

 

where 𝑤 is calculated by considering the number of term words in a query. It is noted that our query is a 

meta-bug report. The formula used to calculate 𝑤 is: 
 

𝑤 =
2

1 + 𝑙𝑜𝑔2(1 + |𝑄|)
 

(10) 
 

then, |𝑄| is the total number of terms found in the query. However, the value of w should be between 0 and 1. 

TDF serves to assign a higher score to the documents containing rare terms in the collection and 

combines two tf aspects: Inverse document frequency (IDF); and average elite set term frequency (AEF). In 

this case, the IDF then applies the standard IDF measure. Its formula is 

 

𝐼𝐷𝐹(𝑞𝑖 , 𝐶) = 𝑙𝑜𝑔 (
𝐶𝑆(𝐶) + 1

𝑑𝑓(𝑞𝑖 , 𝐶)
) 

(11) 

 

in this study, 𝐶𝑆(𝐶)is the entire number of bug reports in the collection, while 𝑑𝑓(𝑞𝑖 , 𝐶) is the number of bug 

reports containing term q-th. Meanwhile, the AEF can be defined as 

 

𝐴𝐸𝐹(𝑞𝑖 , 𝐶) =
𝐶𝑇𝐹(𝑞𝑖 , 𝐶)

𝑑𝑓(𝑞𝑖 , 𝐶)
 

(12) 

 

where 𝐶𝑇𝐹(𝑞𝑖 , 𝐶) is defined as the total occurrence of the terms q-th of 𝑄 in the collection. After obtaining 

the value of AEF, this value should be normalized using the formula (6). Finally, the formula of TDF can be: 

 

𝑇𝐷𝐹(𝑞𝑖 , 𝐷) = 𝐼𝐷𝐹(𝑞𝑖 , 𝐶) ×
𝐴𝐸𝐹(𝑞𝑖 , 𝐶)

1 + 𝐴𝐸𝐹(𝑞𝑖 , 𝐶)
 

(13) 

 

2.4.3. BM25 approach for text similarity 

BM25 is a well-known ranking function that ranks matching relevant documents according to their 

relevance to a given search query (𝑄), regardless of the inter-relationship between the query terms within a 

document [56], [57]. It notices that ‘query’ in this study referred to meta-bug report. The BM25 formula is: 

 

𝐵𝑀25(𝑄, 𝐷) = ∑ 𝑖𝑑𝑓(𝑞𝑖)

|𝑄|

𝑖=1

× (
𝑡𝑓(𝑞𝑖 , 𝐷) × (𝑘1 + 1)

𝑓(𝑞𝑖 , 𝐷) + 𝑘1 × (1 − 𝑏 + 𝑏 ×
|𝐷|

𝐷𝐿𝑎𝑣𝑔
)
) 

(14) 

 

in this study, 𝑡𝑓(𝑞𝑖 , 𝐷) is the term frequency. It is used to define the number of times of the query term q-th 

appearing in bug report document 𝐷. While |𝐷| is defined as the length of bug report document 𝐷 and 𝐷𝐿𝑎𝑣𝑔 is 

the average length of all bug reports in the collection. b is the free parameter of the normalization method for 

𝑡𝑓(𝑞𝑖 , 𝐷). It is only valid within [0, 1] but The standard setting for b should be 0.5 < b < 0.8 [56], [58]. While 𝑘1 is 

also the free parameter used to control the value given by (1 − 𝑏 + 𝑏 ×
|𝐷|

𝐷𝐿𝑎𝑣𝑔
). The standard setting for 𝑘1 should 

be 1.2 [56], [58]. However, the most common settings of 𝑘1 and b should be 2.0 and 0.8 respectively [56]. 

Consider 𝑘1, where 𝑖𝑑𝑓 referred to the inverse document frequency of the term q-th of 𝑄. Its formula is: 

 

𝑖𝑑𝑓(𝑞𝑖) = 𝑙𝑜𝑔 (
𝑁 − 𝑑𝑓(𝑞𝑖) + 0.5

𝑑𝑓(𝑞𝑖) + 0.5
) 

(15) 
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in this study, 𝑁 represents the whole number of bug reports in the collection. While 𝑑𝑓(𝑞𝑖) is the number of 

bug reports holding the term q-th of 𝑄. 

In general, the similarity score should be between 0 and 1. However, when using the BM25 technique to 

estimate the similarity score, it is possible that this technique can return a score greater than 1.0. Similarity scores 

should be normalized to allow a comparison of different similarity values using a single scale. Normalizing 

similarity scores helps to remove the mean and scale to the similarity score variance. To normalize the BM25 

similarity scores in the range [0, 1], the function showed as the formula (6) also applies in this case. 

 

2.4.4. The proposed method: threshold-based similarity analysis 

To obtain the most appropriate model for assembling the dependent bug reports, we also provide 

thresholds to determine the similarity score. These thresholds are from 0 to 1 with step 0.1. This concept is 

similar to Gopalan and Krishna [24], and Rocha et al. [43], [44]. When the similarity score of the meta-bug 

report and a bug report is greater than, or equal to the threshold, it appears that those bug reports should be 

grouped into the same cluster because they may be relevant. Yet, when the similarity score of the meta-bug 

report and a bug report is below the threshold, those bug reports may be irrelevant. The pseudocode of 

assembling the dependent bug reports is presented as Algorithm 1. 

 
Algorithm 1. Assembling of dependent bug reports with a threshold-based similarity 

analysis 

Input: M is a set of meta-bug reports 

Input: B is a set of bug reports 

Input: T is a set of thresholds, {0.1, 0.2, 0.3, …, 1.0}  

Output: Clusters of each meta-bug report and its relevant bug reports 

Parameter: R: a set of M ∪ B 
Parameter: mi: the current meta-bug report that is analyzed 

Parameter: ri: the current bug report that is analyzed 

Parameter: Sim: Similarity measure with similarity analysis techniques {CS, MATF, 

BM25} 

Parameter: Cmi: Cluster of mi 

Let R be M ∪ B 
while not end of M do 

miM //read the next meta-bug report; 

while not end of R do 

riR //read the next bug report; 

similarity score  Sim(mi, ri); //ri ≠ mi  

if similarity score ≥ T then 

Add ri into Cmi; 

end  

end 

end 

 

In Algorithm 1, a meta-bug report is considered as the centroid for each cluster. Beginning with the 

bug reports in the corpus, the similarity of each bug report with the centroid of the existing clusters is 

computed as a similarity score of the summary part. If the maximum of the similarity scores for the bug 

report with the centroid is over a given threshold, it is inserted into the cluster. If the maximum similarity is 

below the threshold, that bug report may be analyzed with other clusters. This process is iteratively 

performed until that bug report is able to identify its suitable clusters. It is noted that a bug report can be in 

many clusters. Figure 4 shows that the bug report ‘a’ is dependent on both meta-bug reports M1 and M2. 
 

 

 
 

Figure 4. Expected results representing meta-bug reports and their dependent bug reports  
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3. RESULTS AND DISCUSSION 

3.1.   The measurements techniques for evaluation 

This section presents the experimental results of the automatic dependent bug report assemblage by using 

true positive rate (TPR) [3], [5], [15], [16], [24], [59]-[63], true negative rate (TNR) [3], [5], [24], [62], [63], and 

F1 [5], [24], [59], [60]. TPR (also called sensitivity or recall) measures the proportion of actual positives that are 

correctly identified. Meanwhile, the TNR (or specificity) measures the proportion of actual negatives that are 

correctly identified. Finally, the F1 is the harmonic mean of the TPR and TNR. This measure is used to determine 

test accuracy. The best value for F1 is 1 and the worst value is 0. Consider the confusion matrix, shown as Figure 

5(a), and then the formulas of those measurement techniques can be summarized as Figure 5(b). 
 

 

  
(a) (b) 

 

Figure 5. The confusion matrix and the formulas of TPR, TNR, and F1 
 

 

Furthermore, the results of TPR and TNR can be used to analyze the receiver operator characteristic 

(ROC) curve and area under curve (AUC), respectively. The ROC curve [3], [15], [16], [59], [60], [62]-[64] is 

used to measure how well a dependent bug report can be detected from a dataset of bug reports, while the AUC 

[15], [16], [59], [60], [62]-[64] represents the degree or measure of separability. The ROC curve is plotted with 

TPR against the false positive rate (FPR or 1-TNR) [3], [15], [16], [60], with TPR on the y-axis and FPR on the 

x-axis. The area under the ROC curve is termed AUC. These measurements are two of the most important 

evaluation metrics for checking the performance of dependent bug reports assembly. The ROC curve and AUC 

can be used to obtain the most appropriate threshold and models based on our proposed. 

However, to compare our proposed with measurement techniques used in the-state-of-the-art method, 

feedback, precision, and likelihood [43], [44], [65] must be included. Formulas for feedback, precision and 

likelihood are explained as detailed below; however, before presenting these formulas to calculate the metric, the 

following sets require definition. Let 𝐵𝑅𝑞 be the set of dependent bug reports retrieved by the proposed method, 

while 𝐵𝑅𝑞(𝑘) is top-k bug reports in 𝐵𝑅𝑞 ordered by textual similarity (only defined for |𝐵𝑅𝑞|  ≥  𝑘). Rq is the 

set of dependent bug reports with their answers. Meanwhile, 𝑍 is the total number of meta-bug reports at 478 in 

total, and 𝑍𝑘 is a subset of 𝑍 that can retrieve the dependent bug reports at least 𝑘. These definitions help to define 

feedback, precision, and likelihood. Feedback involves measuring the number of bug reports that are retrieved 

when using a given query as a meta-bug report. Formally, the feedback of 𝑘, denoted as 𝐹𝐵(𝑘), is the percentage 

of queries with at least 𝑘 bug reports retrieved. The feedback formula can be defined as: 
 

𝐹𝐵(𝑘) =
|𝑍𝑘|

𝑍
 (16) 

 

for example, suppose a system performed 10 meta-bug reports as queries (|𝑍|  =  10). If all these meta-bug 

reports each returned at least 1 relevant bug report, then feedback for 𝑘 =  1. Thus, 𝐹𝐵(𝑘 = 1) would be 100%. 

Conversely, if only 3 of the meta-bug reports returned at least 3 bug reports, then 𝐹𝐵(𝑘 = 3) would be 30%. 

Precision, denoted as 𝑃(𝑘), measures the ratio of dependent bug reports that are retrieved. The 

formula for precision can be expressed as: 

 

𝑃𝑞(𝑘) =
𝐵𝑅𝑞(𝑘) ∩ 𝑅𝑞

𝐵𝑅𝑞(𝑘)
 

(17) 

 

In addition, overall precision in our dataset collection is defined as the average precision achieved 

for each meta-bug report that is considered as query. The formula of average precision can be presented as: 
 

𝑃(𝑘) =
1

|𝑍𝑘|
∑ 𝑃𝑞

𝑞∈𝑍𝑘

(𝑘) 

(18) 
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suppose that a meta-bug report returned 5 bug reports. If the first bug report is relevant, then P(1)=100%; 

otherwise, if the first bug report is not relevant, then P(1)=0%. Besides, if among all 5 bug reports only the 

third one is relevant, then the precision values would be P(2)=0%, P(3)=33%, P(4)=25%, and P(5)=20%. 

The likelihood is a binary measure, denoted as 𝐿(𝑘). It is a common measure used to assess the 

advantage of retrieving relevant bug reports. In this context, the likelihood checks whether there is a dependent bug 

report among the top-k suggested issues. The likelihood of the top-k dependent bug reports can be defined as: 
 

𝐿𝑞(𝑘) = {
1if𝐵𝑅𝑞(𝑘) ∩ 𝑅𝑞 ≠ ∅

0otherwise
 

(19) 
 

if at least one relevant bug report exists among the top-k bug reports that are retrieved, the answer is returned 

one; if not, the return is zero. The overall likelihood in our dataset collection, defined as the average 

likelihood measured for each meta-bug report, can be represented as: 
 

𝐿(𝑘) =
1

|𝑍𝑘|
∑ 𝐿𝑞(𝑘)

𝑞∈𝑍𝑘

 

(20) 

 

3.2.   Evaluation of the proposed method  

Table 2 and Table 3 present the experimental results of the proposed method. The dataset used for 

our experiment consisted of 478 meta-bug reports and 10,581 bug reports dependent on these meta-bug 

reports. Table 2 presents the experimental results of assembling dependent bug reports using unigram as 

features, while Table 3 presents the experimental results of assembling dependent bug reports using 

unigram+CamelCase as features. 

Table 2 shows the experimental results using unigram as features. BM25 with thresholds of 0.1-0.4 

returned the best results for TPR, TNR, and F1, while MATF with thresholds of 0.1-0.3 returned the best 

results for TPR, TNR, and F1. However, when considering the evidence of CS, a threshold of 0.1 returned 

the best results for TPR, TNR, and F1. The best TPR, TNR, and F1 scores of assembling dependent bug 

reports were 0.654, 0.921 and 0.765, respectively. 

However, when considering Table 3, it is the experimental results when using unigram+CamelCase as 

features. The evident of Cosine Similarity and MATF returned the similar results shown as Table 2. Nevertheless, 

the BM25 returned the best results for TPR and F1, when using the threshold at 0.5. Then, it returns the best TPR, 

TNR, and F1 scores of assembling dependent bug reports at 0.696, 0.918, and 0.792 respectively. 
 

 

Table 2. The experimental results when using unigram as features 

Threshold 
CS MATF BM25 

TPR TNR F1 TPR TNR F1 TPR TNR F1 

0.1 0.651 0.925 0.764 0.654 0.921 0.765 0.654 0.921 0.765 

0.2 0.485 0.978 0.648 0.654 0.921 0.765 0.654 0.921 0.765 

0.3 0.312 0.995 0.475 0.654 0.921 0.765 0.654 0.921 0.765 

0.4 0.195 0.998 0.326 0.653 0.921 0.764 0.654 0.921 0.765 

0.5 0.110 0.999 0.198 0.425 0.960 0.589 0.643 0.930 0.760 

0.6 0.058 1.000 0.110 0.021 0.998 0.041 0.576 0.964 0.721 

0.7 0.026 1.000 0.051 0.000 1.000 0.000 0.428 0.990 0.598 

0.8 0.007 1.000 0.014 0.000 1.000 0.000 0.213 0.999 0.351 

0.9 0.001 1.000 0.002 0.000 1.000 0.000 0.019 1.000 0.037 

1.0 0.001 1.000 0.002 0.000 1.000 0.000 0.000 1.000 0.000 

 

 

Table 3. The experimental results when using unigram+CamelCase as features 

Threshold 
CS MATF BM25 

TPR TNR F1 TPR TNR F1 TPR TNR F1 

0.1 0.688 0.918 0.787 0.696 0.918 0.792 0.696 0.918 0.792 

0.2 0.496 0.979 0.658 0.696 0.918 0.792 0.696 0.918 0.792 

0.3 0.322 0.995 0.487 0.696 0.918 0.792 0.696 0.918 0.792 

0.4 0.205 0.998 0.340 0.695 0.908 0.787 0.696 0.918 0.792 

0.5 0.123 0.999 0.219 0.461 0.951 0.621 0.696 0.918 0.792 

0.6 0.058 1.000 0.110 0.024 0.997 0.047 0.610 0.960 0.746 

0.7 0.029 1.000 0.056 0.000 1.000 0.000 0.459 0.988 0.627 

0.8 0.009 1.000 0.018 0.000 1.000 0.000 0.249 0.998 0.399 

0.9 0.001 1.000 0.002 0.000 1.000 0.000 0.037 1.000 0.071 

1.0 0.001 1.000 0.002 0.000 1.000 0.000 0.000 1.000 0.000 
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As described above, it was not possible to specify the best threshold for BM25 and MATF since the 

thresholds which had the best performance of for these techniques are between 0.1 and 0.5. To specify the 

best threshold for CS, BM25, and MATF, the ROC curve and AUC were applied, in which the ROC curve is 

a measure of the usefulness of a test in general, while a greater area means the test is more useful. The areas 

under the ROC curves, called AUC, are used to compare the usefulness of the tests. Figure 6(a) depicts the 

results of the ROC curve and AUC scores of the dependent bug report assemblage using unigram as features, 

while Figure 6(b) shows the results of the ROC curve and AUC scores of the dependent bug report 

assemblage using unigram+CamelCase as features. 

 

 

  
(a) (b) 

 

Figure 6. The Results of the ROC curves and AUC scores: (a) the models using unigram as features,  

(b) the models using unigram+CamelCase as features 

 

 

The figures above indicate that the best CS threshold should be 0.1, while the best MATF threshold 

should be 0.3. However, the best BM25 threshold in Tables 2 and 3 are slightly different. The best BM25 

threshold in Table 2 should be 0.4 but the best BM25 threshold in Table 3 should be 0.5. Results of the 

selected models in our study are summarized in Table 4. 

 

 

Table 4. The summary of selected models 
Algorithms Features The Best Threshold TPR TNR F1 

CS 
unigram 0.1 0.651 0.925 0.764 

unigram+CamelCase 0.1 0.688 0.918 0.787 

MATF 
unigram 0.3 0.654 0.921 0.765 

unigram+CamelCase 0.3 0.696 0.918 0.792 

BM25 
unigram 0.4 0.654 0.921 0.765 

unigram+CamelCase 0.5 0.696 0.918 0.792 

 

 

Results in Table 4 show that the MATF model with a threshold as 0.3 and the BM25 model with a 

threshold as 0.5 returned the best scores of TPR, TNR, and F1 at 0.696, 0.918 and 0.792, respectively. The 

background of MATF was similar to BM25, meaning that this technique also returned similar results of 

assembling dependent bug reports. Nonetheless, MATF had faster processing times than BM25, while CS 

had faster processing times than both BM25 and MATF. 

The best models in Table 4 were chosen for comparison with the state-of-the-art method [43]. They 

are the CS model with threshold as 0.1, the MATF model with threshold as 0.3, and the BM25 model with 

threshold as 0.5. These models use unigram+CamelCase as features. 

Furthermore, if considering the results in Table 4 in term of features usage are considered, it can be 

seen that using unigram+CamelCase as features can return better results than using only unigram as features. 

This is because the CamelCase can help to identify the specificity of the particular software because it may 

include “function names”, “variables”, “API specifications”, and so on which can be found in the software. 

Therefore, it was unsurprising that unigram+CamelCase as features returned more satisfactory results for 

assembling dependent bug reports. Then, our reason may be similar to [10], [13], [33]-[35]. 
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3.3.   Comparison of the proposed method and the -state-of-the-art method 

As mentioned earlier, our proposed method was compared with the state-of-the-art method proposed 

by Rocha et al. [43]. They used feedback, precision, and likelihood as their evaluation metrics as also used 

here. Rocha et al. used only the summary component of bug reports, similar to our study. They also used 

unigram features, while the main mechanism for identifying similar bug reports was cosine similarity with a 

threshold as 0.1. Interestingly, Rocha et al. retrieved only the first five recommended bug reports. Our 

proposal was compared with the same environment as used by Rocha et al. [43]. Table 5 shows a comparison 

of the results. 

 

 

Table 5. The results of comparisons between the proposed method and the state-of-the art method suing 

feedback, precision, and likelihood considering k=1 to k=5 

Metrics k Rocha et al. 
The Proposed Method 

CS MATF BM25 

Feedback 

1 1.000 1.000 1.000 1.000 

2 1.000 1.000 1.000 1.000 

3 1.000 1.000 1.000 1.000 

4 1.000 1.000 1.000 1.000 

5 0.995 0.995 0.995 0.995 

Avg. 0.999 0.999 0.999 0.999 

Precision 

1 0.430 0.460 0.510 0.510 

2 0.413 0.443 0.487 0.490 

3 0.392 0.415 0.447 0.452 

4 0.371 0.389 0.425 0.436 

5 0.359 0.371 0.404 0.410 

Avg. 0.393 0.415 0.454 0.460 

Likelihood 

1 0.430 0.460 0.510 0.510 

2 0.570 0.615 0.650 0.650 

3 0.630 0.690 0.714 0.715 

4 0.680 0.720 0.760 0.765 

5 0.725 0.735 0.765 0.770 

Avg. 0.607 0.644 0.680 0.682 

 

 

Results in Table 5 show that our proposed method returned better results than the state-of-the-art 

method proposed by Rocha et al. [43], with improved scores of precision and likelihood at 12% and 12.4%, 

respectively. There are two points that can help to improve the performance of assembling dependent bug 

reports. First, the use of CamelCase as features can indicate the specificity of a problem domain in software, 

since different problem domains of a software may use different CamelCase terms. Meanwhile, BM25 is the 

appropriate similarity technique for this work. A potential reason for the effectiveness of BM25 is that it can 

show the degree of importance of terms appearing in bug reports, and thus to derive the relevance of a bug 

report to a given more accurately by taking more elaborate information of terms, bug reports, and bug report 

collection into consideration, rather than only term appearance in the traditional similarity scheme (cosine 

similarity). For example, the weighting model of BM25 incorporates bug report length, average length of all 

bug reports in the collection, as well as the term frequency normalization effect. This technique is 

subsequently able to return better performance than the CS technique. 

 

 

4. CONCLUSIONS 

One task, known as the “bug dependency problem”, affects the completion of software bug fixing. 

The bug dependency problem can be described as a situation in which an unfixed bug “x” affects bug “y”. 

Then, bug “y” continues to occur despite being fixed if bug “x” is not yet completely fixed. Despite being 

mentioned by various previous studies, this problem has never been fully investigated. Therefore, this study 

addressed the bug dependency issue. The most relevant studies related to automatic bug dependency analysis 

were presented as a method for recommending similar bug reports to the report under consideration. 

Therefore, their proposed method was used as the state-of-the-art method for comparison with our proposal. 

Here, a method was presented to assign dependent bug reports into specific groups having meta-bug reports 

considered as the center points. The proposed method was called “threshold-based similarity analysis”. To 

obtain the most appropriate model, two feature types namely unigram and unigram+CamelCase, and three 

similarity techniques namely CS, MATF, and BM25 were compared. Experimental results indicated that 

unigram+CamelCase returned the most appropriate results, while BM25 was better than CS and MATF. 

Furthermore, after evaluating all models in an experimental environment, BM25 with a threshold of 0.5 was 

determined as the most accurate. Therefore, this model was chosen to compare with the state-of-the-art. After 
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comparison for feedback, precision, and likelihood, the feedback rate was the same but our proposed method 

improved the precision and likelihood over the state-of-the-art by 12% and 12.4% respectively. Therefore, 

our results can be used to encourage developers to recognize all dependent bugs in the same problem domain. 

It is well-known that performing this task in software development and maintenance is time-consuming and 

labor-intensive when performed manually. However, this study focuses on the bug reports from Mozilla 

Firefox for the evaluation of the proposed approach. The results of the proposed method might not be 

guaranteed with the inclusion of bug reports from other software projects. In the future, we plan to address 

this issue with two information parts of bug reports for study. They are the summary and descriptive parts. 

This is because the descriptive part may contain significant information that will help to improve the 

performance of automatic assembly of dependent bug reports. 
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