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 In this paper, we define the  - -fuzzy subring and discussed various 

fundamental aspects of  - -fuzzy subrings. We introduce the concept of  -

 -level subset of this new fuzzy set and prove that  - -level subset of  - -

fuzzy subring form a ring. We define  - -fuzzy ideal and show that set of 

all  - -fuzzy cosets form a ring. Moreover, we investigate the properties of 

homomorphic image of  - -fuzzy subring.  
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1. INTRODUCTION 

In mathematics, ring theory is one of the most important part of abstract algebra. In algebra, ring 

theory studies the algebraic structures of rings. Rings algebraic structure is a framework in which addition 

and multiplication are well defined with some more properties. 

The concept of fuzzy sets was introduced by Zadeh [1] in     . Many mathematician have applied 

various hybrid models of fuzzy sets and intuitionistic fuzzy sets to several algebraic structure such as group 

theory [2, 3], non-associative ring [4, 5], time series [6, 7] and decision making [8]. Rosenfeld [9] 

commenced the idea of fuzzy subgroups in 1971. The fuzzy subrings were initiated by Liu [10] Dixit et al. 

[11] described the notion of level subgroup in     . The idea of anti-fuzzy subgroups was invented by 

Biswas [12]. Gupta [13] defined many classical  -operators in 1991. Solairaju and Nagarajan [14] explored a 

new structure and construction of  -fuzzy groups in       Muthuraj et al. [15] proposed the study of lower 

level subsets of anti-QFS in 2010  The concept of  -fuzzy normal subgroups and  -fuzzy normalizer were 

established by Priya et al. [16] in 2013. Sither Selvam et al. [17] used the Biswas work to modify the idea of 

anti-QFNS in 2014. Alsarahead and Ahmed [18-20] commenced new concept of complex fuzzy subring, 

complex fuzzy subgroup and complex fuzzy soft subgroups in     . Makaba and Murali [21] discussed 

fuzzy subgroups of finite groups. Rasuli [22] discussed  -fuzzy subring with respect to  -norm in       The 

 -fuzzy subgroup in algebra was discussed in [23]. More development about fuzzy subgroup may be viewed 
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in [24]. Shafei et al [25] studied the fuzzy logic control systems for demand management in airports and 

energy efficiency by using 3D simulator. 

This paper is organized as the section   contains the elementary definition of  -fuzzy subrings and 

related results which are thoroughly crucial to understand the novelty of this article. In section  , we define 

the  - -fuzzy subring and prove that the level subset of  - -fuzzy subrings is a subring. We also define  -

 -fuzzy ideal and discuss its properties. In section  , we use the classical ring homomorphism to investigate 

the behavior of homomorphic image (inverse-image) of  - -fuzzy subring.  

 

 

2. PRELIMINARIES 

We recall first the elementary notion of fuzzy sets which play a key role for our further analysis. 

Definition 2.1. [1]: A fuzzy set   of a nonempty set   is a function,  

 

     ,   -  
 

Definition 2.2. [10]: Let   be fuzzy subset of a ring  . Then   is said to a fuzzy subring if 

i.  (   )     * ( )  ( )+ 

ii.  (  )     * ( )  ( )+                
 

Definition 2.3. [14]: Let   and   be two nonempty sets. A  -fuzzy subset   of set   is a function     
  ,   -               and      

 

Definition 2.4. [14]: A function       ,   - is a QFSRR of a ring   if 

i.  (     )     * (   )  (   )+ 

ii.  (    )     * (   )  (   )+                         
 

Definition 2.5. Let the mapping         be a homomorphism. Let   and   be  -QFSRs of    and    
respectively, then  ( ) and    ( ) are image of   and the inverse image of   respectively, defined as 

i.  ( )(   )  {
   * (   )      ( )+       ( )   

        ( )   
                       

ii.    ( )(   )   ( ( )  )                       

 

Definition 2.6. [13]: Let    ,   -  ,   -  ,   - be the algebraic product  -norm on ,   - and is described 

as   *   +                  

 

 

3. PROPERTIES OF  - -FUZZY SUBRINGS 

Definition 3.1. Let   and   be any two nonempty sets and   be a  -fuzzy subset of a set  , any   ,   -. 
Then fuzzy set    of   is said to be  - -fuzzy subset of   (w.r.t  -fuzzy set  ) and defined by: 

 

  (   )    * (   )  +                      

 

Remark 3.2. Clearly,   (   )   (   ) and   (   )   . 
 

Remark 3.3. If   and   be two  -fuzzy sets of  . Then (   )         
 

Definition 3.4. A  -fuzzy subset of a ring   is called  -QFSR, and   ,   -, if 

i   (     )     *  (   )   (   )+                         
 

Theorem 3.5. If   is a  -QFSR of a ring  , then  

  (   )    (   ), for all     and     where   is the additive identity of    
Proof: Consider  (   )    (     )     *  (   )   (     )+ 
    *  (   )   (   )+    (   )  
Hence,   (   )    (   )             

 

Theorem 3.6. If   is QFSR of a ring  , then   is an  -QFSR of     
Proof: Assume that   is a QFSR of a ring   and         and      
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Assume that,   (     )    * (     )  +    *   * (   )  (   )+  +  

    {  * (   )  +   * (   )  +}     * 
 (   )   (   )+ 

  (     )     *  (   )   (   )+  
Further   (    )    * (    )  +    *   * (   )  (   )+  +  

    {  * (   )  +   * (   )  +}     * 
 (   )   (   )+ 

  (    )     *  (   )   (   )+ 
Consequently,   is  -QFSR of  . In general, the converse may not be true.  

Note 3.7. we take   * + in all the examples 

 

Example 3.8 Let   *       +, be a ring and   * +  Let the  -fuzzy set   of   described by: 

 

 (   )  {
           
               
            

  

 

Take     then,  

 

  (   )    * (   )  +    * (   )  +                 

 

⟹   (     )     *  (   )   (   )+  

 

Further, we have   (    )     *  (   )   (   )+ 
Consequently   is  -QFSR of   and   is not QFSR of     
 

Definition 3.9. Let   be  -Q-fuzzy set of universe set  . For      ,   - the level subset   
  of  - -fuzzy 

set is given by:  

 

  
  *       (   )   +  

 

Theorem 3.10. Let   is  - -fuzzy subring of   then   
  is subring of   for all    (   )  

Proof: It is quite obvious that    is non-empty. Since   be  - -fuzzy subring of a ring    which implies 

that   (   )    (   )             and      Let       
  then   (   )        (   )   .  

Now,  

 

  (     )     *  (   )   (   )+     *   +     

 

  (    )     *  (   )   (   )+     *   +     

 

This implies that         
  . Hence,   

  is subring of    
 

Definition 3.11. Let   be a  -fuzzy subset of a ring   and   ,   -  Then    is  - -fuzzy left ideal ( -

QFLI) of   if,  

i   (     )     *  (   )   (   )+ 
ii   (    )    (   )                       

 

Definition 3.12. Let   be a  -fuzzy subset of a ring   and   ,   -  Then    is  - -fuzzy right ideal ( -

QFRI) of   if,  

i.   (     )     *  (   )   (   )+ 
ii.   (    )    (   )                       

 

Definition 3.13. Let   be a  -fuzzy subset of a ring   and   ,   -  Then    is  -QFI of   if,  

i.   (     )     *  (   )   (   )+ 
ii.   (    )     *  (   )   (   )+                        

 

Definition 3.14. Let   be a  -QFSR of a ring   and   ,   -. For any     and    , The  - -fuzzy 

coset of   in   is represented by      as defined as,  
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(    )(   )    * (     )  +   
 (   )                        

Theorem 3.15. Let   be ω-QFI of ring  . Then the set 

  
  *       (   )    (   )+ is an ideal of ring  . 

Proof: Obviously   
     because    . Let       

  be any elements.  

Consider 

  (     )     *  (   )   (   )+     *  (   )   (   )+ 
Implies that   (     )    (   ). But   (     )    (   ) 
Therefore,   (     )     ( ) 
Implies that       

 . 

Further, let     
  and    . Consider  

  (    )     *  (   )   (   )+     *  (   )   (   )+, 
Implies that   (    )    (   ). But   (    )    (   ) 
Therefore,   (    )    (   ). 
Similarly,   (    )     (   ) 
Implies that         

 . 

Implies that    
  is an ideal. 

 

Theorem 3.16. Let   
  be an  -QFI of ring  ,              . Then,  

 

                               
    

 

Proof: For any      , we have          . 

Consider, 

 

  (     )  (    )(   )  (    )(   )    (   )  
 

Therefore,       
 . 

Conversely, let       
  

Implies that   (     )    (   ) 

Consider, (    )(   )    (     )    ((   )  (   )  ) 

    {  ((   )  )   ((   )  )}  

    {  ((   )  )   (   )}    ((   )  )  (    )(   )  

Interchange the role of   and   we get (    )(   )  (    )(   ) 
Therefore, (    )(   )  (    )(   ), for all     

 

Definition 3.17. Let   be a  -QFI of a ring    The set of all  - -fuzzy cosets of   denoted by    ⁄  form a 

ring with respect to binary operation * defined by  

 (    )  (    )  (   )                        ⁄          

 (    )  (    )  (   )                        ⁄         The ring    ⁄  is called 

the factor ring of   with respect to  -QFI   .  

 

Theorem 3.18. The set    ⁄  forms a ring with respect to the above stated binary operation.  

Proof:         
      

          
      

                           Let     be any 

element of   and      
 

(       
 )(   )    (  (     )  )  

 

   ((       )  )      
 ((    )  )      

 ((    )  )  

 

   ((       )  )      
 ((    )  )      

 ((    )  )  

 

   ((       )  )   
 (  (     )  )  (       

 )(   )  

 

Moreover,  

 

(      
 )(   )    (       (         )  )  
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    *  (      )  
 ((         )  )+  

 

But we have,   ((         )  )   
 ((                   )  ) 

 

   ((     )     (     )  )     * 
 (     )    )  

 (  (     )  )+  

 

    *  ((     )  )  
 ((     )  )+  

 

    *  (   )   (   )+  
 

  ((         )  )   
 (   )  

 

(      
 )(   )    (      )  )  

 

 (      
 )(   )  

 

Similarly, we can prove that (      
 )(   )  (      

 )(   ) 
Consequently, (      

 )(   )  (      
 )(   ). 

Therefore   is well defined. Now we prove that the following axioms of ring, for any        
1) (    )  (    )         

2) (    )  ,(    )  (    )-       ,      -  (   )       ,    
  -       ,(    )  (    )-  (    ) 

3) (    )  (    )                (    )  (    ) 
4) (    )  (    )  (    ) 
5) (    )  (     )     

6) (    )(    )        

7) (    ),(    )(    )-       ,     -         ,     -       
,(    )(    )-(    ) 

8) (    ),(    )  (    )-  (    ),(   )    -   (   )     (     )  
   (     )  (     )  ,(    )(    )  (    )(    )-, 

9) ,(    )  (    )-(    )  ,(   )    -(    )  (   )     (     )  
   (     )  (     )  ,(    )(    )  (    )(    )- 

Consequently, (   ⁄     ) is a ring.  

 

 

4. HOMOMORPHISM OF  - -FUZZY SUBRINGS  

In this section, we investigate the behavior of homomorphic image and inverse image of  -QFSR.  

 

Lemma 4.1. Let       be a mapping and   and   be two fuzzy subsets of   and   respectively, then  

i.    (  )(   )  (   ( ))
 
(   ), for all     and      

ii.  (  )(   )  ( ( ))
 
(   ), for all     and     

 

Proof:  

(i)    (   )( )    ( ( ))    { ( ( ))  }     * 
  ( )( )  + 

   (   )( )   (   ( ))
 
( )             

(ii)  (  )(   )     *  (   )  ( )   +     {  * (   )  +  ( )   } 

   {   {* (   )  ( )   +  }}    * ( )(   )  +  ( ( ))
 
(   )             

Hence,  (  )(   )  ( ( ))
 
(   ) 

 

Theorem 4.2. Let        be a homomorphism from a ring    to a ring    and   be a  -QFSR of ring 

   . Then  ( ) is a  -QFSR of ring      
Proof: Let   be a  -QFSR of ring     Let           be any element. Then there exists unique elements 

         such that  (  )     and  (  )     and          
Consider,  
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( ( ))
 
(       )    * ( )(       )  +    * ( )( (  )   (  )  )  +  

   * ( )( (     )  )  +    * (       )   +   
 (       )  

 

    *  (    )  
 (    )+                            (  )          (  )    +  

 

    *   *  (    )    (  )    +     * 
  (    )    (  )    ++  

 

    * (  )(    )  ( 
 )(    )+     {( ( ))

 
(    ) ( ( ))

 
(    )}  

 

     ( ( ))
 
(      )     {( ( ))

 
(    ) ( ( ))

 
(    )}  

 

Further, ( ( ))
 
(      )    * ( )(      )  +    * ( )( (  ) (  )  )  + 

 

   * ( )( (    )  )  +    * (      )   +   
 (      )  

 

    *  (    )  
 (    )+                            (  )          (  )    +  

 

    *   *  (    )    (  )    +     * 
  (    )    (  )    ++  

 

    * (  )(    )  ( 
 )(    )+     {( ( ))

 
(    ) ( ( ))

 
(    )}  

 

     ( ( ))
 
(      )     {( ( ))

 
(    ) ( ( ))

 
(    )}  

 

Consequently,  ( ) is  -QFSR of     
 

Theorem 4.3. Let         be a homomorphism from ring    into a ring    and   be a  -QFSR of ring 

    Then    ( ) is  -QFSR of ring     

Proof: Let   be  -QFSR of ring   . Let          be any elements, then (   ( ))
 
(   

    )   
  (  )(       )   

 ( (     )  ) 
 

   ( (  )   (  )  )  
 

    *  ( (  )  )  
 ( (  )  )+     * 

  (  )(    )  
  (  )(    )+  

 

    {(   ( ))
 
(    ) ( 

  ( ))
 
(    )}  

 

Thus, (   ( ))
 
(      )     {( 

  ( ))
 
(    ) ( 

  ( ))
 
(    )} 

Further, (   ( ))
 
(      )   

  (  )(      )   
 ( (    )  )   

 ( (  ) (  )  ) 

    *  ( (  )  )  
 ( (  )  )+     * 

  (  )(    )  
  (  )(    )+  

    {(   ( ))
 
(    ) ( 

  ( ))
 
(    )}  

Thus, (   ( ))
 
(      )     {( 

  ( ))
 
(    ) ( 

  ( ))
 
(    )}  

 

Consequently    ( ) is  -QFSR of a ring     
 

 

5. CONCLUSION 

In paper, we have proved the level subset of two  - -fuzzy subrings is a subring. In addition, we 

have extended the study of this ideology to investigate the effect of image and inverse image of  -QFSR 

under ring homomorphism.  
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