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Abstract 
A scheme of quantum state sharing (QSTS) an arbitrary three-qubit state is presented using two 

particular four-qubit cluster state as the quantum channel. With four Bell pairs state measurements and the 
local unitary operation, any one of the two agents has the access to reconstruct the original if he/she 
collaborates with the other one. 
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1. Introduction 
Since Hillery et al. [1] demonstrated that a three-particle GHZ state can be used for 

quantum state sharing (QSTS), QSTS has been attracted a great deal of attention in recent 
several years [2-15]. In a QSTS scheme, the quantum information to be shared is an arbitrary 
unknown quantum state in the sender’s site, if and only if all agents collaborate, the unknown 
state can be fully reconstructed by one final receiver. QSTS of an arbitrary two-qubit state was 
realized by using four Bell pairs [4], the five-cluster states [16]. QSTS of an arbitrary three-qubit 
state was realized by using four sets of W-class states [17]. 

It is known that the cluster state has some interesting entanglement properties. So far, 
many schemes to prepare two-dimensional cluster states have been proposed [18-22] and a lot 
of applications of cluster states have been realized [23-26]. In this paper, by utilizing two four-
qubit cluster states as a quantum channel, we will propose a scheme for sharing an arbitrary 
unknown three-qubit state among three parties. 

 
 

2.  Quantum State Sharing of an Arbitrary Three-Qubit State 
Suppose there are three legitimate parties, Alice, Bob and Charlie. Alice is the sender 

of quantum information. Bob and Charlie are two agents. We suppose Alice has an arbitrary 
three-qubit state, which can be described as 
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where 0 1,  ,  x x and 7x  are arbitrary complex numbers, and it is assumed that the 

wave function satisfies the normalization condition 
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(2) 

 

where particles 1 2 3 1 2 3, , , , ,a a a A A A  belong to Alice, qubits 1 2 3, ,B B B  belong to Bob 

and qubits 1 2,C C  belong to Charlie. 

Here, we assume that Alice wants to transmit the state
1 2 3a a a

  to Bob who is assigned 

to reconstruct the original state in his own qubits (i.e., qubits 1 2 3, ,B B B ) with the help of Charlie. 

Thus the total state of system can be expressed as: 
 

1 2 3 1 2 1 1 2 3 3 2s a a a A A B C B B A C
       

(3) 
 

To split the original state 
1 2 3a a a

 and send the quantum information to Bob, first, Alice 

performs three Bell state measurements on qubits 1 1, ,a A 2 2,a A , and 3 3,a A .Then Alice informs 

Charlie and Bob of her measured results via a classical channel. To help Bob reconstruct the 

original state, Charlie needs to make a two-qubit Bell state measurements on qubits 1 2,C C , 

and then tells Bob his measured result via a classical channel. According to Alice and Charlie's 

classical messages, Bob can obtain the original state in his own qubits (i.e.,qubits 1 2 3, ,B B B ) by 

performing an appropriate unitary transformation operation. 
For convenience, the Bell state can be written [27-29] 
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Without loss of generality, let us suppose the results of Alice’s announcement are 
1 1

1

a A
 , 

2 2

1

a A
 , 

3 3

1

a A
 respectively.  As a result, the state of particles  1 2 3 1 2, , , ,B B B C C  collapse 

into 
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 (5) 
 
After that if Alice communicates to Charlie of her actual measurement outcome via a 

classical channel, then Charlie can make a Bell state measurements on qubits  1 2,C C . If 
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Charlie’s measurement result is 
1 2

1

C C
 , then the particle pair  1 2 3, ,B B B   will collapse into  
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 (6) 
 
Then Bob will be able to apply the following unitary operation 
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(7) 

 

on particles
 
 1 2 3, ,B B B . The resulting state Bob’s particles will be can the original 

unknown three-qubit state. 

Actually, as we known, 
s

 can be represented in the following form [27-29]:  
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where 
1 1 2 2 3 3 1 2

, , ,i j k l

a A a A a A C C
    are Bell states, and 
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(9) 

 
 
After four Bell –state measurements, the corresponding collapsed state of 

particle 1 2 3, ,B B B  will be 
1 2 3 1 2 3

,1

16
ijk l
B B B B B B

  . The operator 
1 2 3

,ijk l
B B B  here is called the collapse 

operator [30]. If 
1 2 3

,ijk l
B B B  is a unitary operator, according to the outcomes received, Bob can 

successfully reconstruct the original unknown three-qubit state exactly by the inverse of the 

collapse operator
1 2 3

, 1( )ijk l
B B B  .  

  By using Eqs. (2-8), the collapse operator can be obtained 
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Other collapse operators 
1 2 3

,ijk l
B B B  is given by  
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 
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where 1 2 3 4ˆ ˆ ˆ ˆ,  ,  ,  ,m m m mz m mx m myI i           1 2 3, ,m B B B
mI is the two-dimensional 

identity operator and ,  ,  mz mx my   are the Pauli operator. Therefore, if Charlie’s and Alice’s 

measurement result are
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It is just that of Eq. (6).  

For other measurement results, similarly, Bob should perform operations 
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on particles  1 2 3, ,B B B . Bob can successfully reconstruct the original unknown three-qubit 

state. 
 
 
3.  Conclusion 

In this paper, by employing two four-qubit cluster state as the quantum channel, we 
have proposed a scheme for sharing an arbitrary unknown three-qubit state among three 
parties. Alice is the sender of quantum information. Bob and Charlie are two agents. According 
to Alice and Charlie's classical messages, Bob can obtain the original state in his own qubits by 
performing an appropriate unitary transformation operation. We hope that such an arbitrary 
three-qubit QSTS scheme can be realized experimentally with photons. 
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