
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 21, No. 2, February 2021, pp. 776~790 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v21.i2.pp776-790      776 

  

Journal homepage: http://ijeecs.iaescore.com 

Analytical solutions of linear and non-linear incommensurate 

fractional-order coupled systems 
 

 

Ramzi B. Albadarneh
1
, Iqbal M. Batiha

2
, Nedal Tahat

3
, Abdel-Kareem N. Alomari

4
 

1,3Department of Mathematics, Faculty of Science, TheHashemiteUniversity, Zarqa, Jordan 
2Department of Mathematics, Faculty of Science, The University of Jordan, Amman, Jordan 

4Department of Mathematics, Faculty of Science, Yarmouk University, Irbid, Jordan 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jun 12, 2020 

Revised Aug 11, 2020 

Accepted Aug 30, 2020 

 

 In this paper, a new analytical method is developed for solving linear and 

non-linear fractional-order coupled systems of incommensurate orders. The 

system consists of two fractional-order differential equations of orders 

       . The proposed approach is performed by decoupling the system 

into two fractional-order differential equations; the first one is a fractional-

order differential equation (FoDE) of one variable of order      , while the 

second one depends on the solution of the first one. The general solution of 

the coupled system is obtained using the adomian decomposition method 

(ADM). The main ideas of this work are verified via several examples of 

linear and nonlinear systems, and the numerical simulations are performed 

using mathematica. 
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1. INTRODUCTION 

Fractional-order Differential Equations (FoDEs) are well suited to model physical systems with 

memory orfractal attributes, and they are increasingly utilized to model many problems in fluid dynamics, 

viscoelasticity, biology, physics and engineering [1-5]. Several methods have been suggested to solve linear 

and non-linear FoDEs such as the Predictor Corrector Method (PCM) [6, 7], the Adomain Decomposition 

Method (ADM) [2, 8-12], the Homotopy Perturbation Method (HPM) [13], the Variational Iteration Method 

(VIM) [14-16], the Differential Transform Method (DTM) [17], and the Finite difference method [18, 19]. 

An analytical method for obtaining solutions of linear FoDEs with Jumarie type derivative in terms of the 

Mittag-Leffler functions and the generalized sine and cosine functions was presented in several papers see [7, 

20-22]. Several non-linear phonemena are modeled by coupled FoDEs such as the fractional-order Chuah’s, 

Rössler's, Duffing's, and Stiff's fractional-order systems [7, 23]. The single-term Haar wavelet series (STHW) 

method were introduced to solve singular stiff delay systems and non-linear singular systems in fluid 

dynamics [23-25]. 

In this paper, linear and nonlinear incommensurate fractional-order systems in two variables,      

and     , of order   and  ,        , are considered. The linear system is first considered and converted 

into two differential equations; one equation is of order    , denoted by      -FoDE, that only depends 

on     , while the analytical solution of the second variable,     , follows from the solution of the first part. 

https://creativecommons.org/licenses/by-sa/4.0/
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The Adomian Decomposition Method (ADM) is implemented to obtain the analytical solution of the    
  -FoDE. Similarly, the solution of the Non-Linear System of Incommensurate Fractional-order (NLS-IFo) 

is also obtained by extending the same technique that used for the case of the linear one. Such solutions are 

obtained using the Adomian Polynomials (AP's), which form the basis for the ADM. 

This paper is outlined as follows: Next section introduces necessary definitions and preliminaries. 

Section 3 introduces a method to convert a LS-IFo into an      -FoDE in one variable. Section 4 

introduces the ADM as a tool to solve the      -FoDE of linear incommensurate order systems. The 

general solution of the nonlinear one is introduced in Section 5. Section 6 summarizes the main ideas of this 

work via numerical simulations followed by conclusions and final remarks.  

 

 

2. BASIC DEFINITIONS AND PRELIMINARIES 

The Caputo's definition of fractional-order derivatives is adopted in this work. It is a modification of 

the Riemann-Liouville definition, with the advantage of only using the initial conditions of the corresponding 

integer-order derivatives that suites most physical system [26-28]. The following definitions and 

preliminaries of fractional calculus are presented here for completeness. 

Definition 2.1 [11]: Let      be anintegrable piecewise continuous function on any finite subinterval 

of        , then the fractional integral of      of order   is defined as: 

 

        
    

    
      

 

    
∫          

 
              . (1) 

 

Definition 2.2 [11]: The Caputo fractional-order derivative is defined as: 

 

       
 

      
∫

       

          

 

 
              . (2) 

 

Theorem 2.3 [11], [24]: The Caputo fractional-order derivative of the power function satisfies 

 

     {

      

        
                       

                        

 (3) 

 

Theorem 2.4 [3], [24]: The Riemann Liouville fractional-order integral of the power function satisfies 

 

     
      

        
             . (4) 

 

Theorem 2.5 [3]: If    ,     and        . Then, 

 

             ,     (5) 

 

Theorem 2.6 [3]: If   is a continuous function on      and    . Then, 

 

              ∑
  

  

   
            . (6) 

 

 

3. CONVERTING A LS-IFO INTO AN      -FODE 

The Integral Transform Methods (ITM) such as Fourier Transform (FT), Laplace Transform (LT), 

and Mellin Transform (MT) are used to solve a single FoDE [29]. In the case of coupled systems of FoDEs, it 

is necessary to employ specific techniques that are appropriate to the given problem. There are several 

methods for solving such problems, see [29] for example. The proposed method in this work presents a new 

direct technique that is competitive to that of the corresponding ones in which order conversion allows one to 

simplify the solution method. For completeness, the following lemma outlines the conversion results, which 

allows one to generate an      -FoDE from the coupled one. 

Lemma 3.1: The following non-homogeneous LS-IFo: 

 

                              (7(a)) 
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                              (7(b)) 

 

can be converted into the following equivalent system: 

 

     
 

   
(                    ), (8(a)) 

 

             
          

                     , (8(b)) 

 

where   *
      

      
+                                ,    and    are the Caputo's fractional-order 

derivatives;        ; and    's are constants for         with      , and where       and       are 

continuous functions of   on some interval  . 
Corollary 3.2: If     in system (7), then the system will be equivalent to the following equations: 

 

     
 

   
(                    ), (9(a)) 

 

                                   , (9(b)) 

 

where   *
      

      
+ and                               . 

 

Proof: The proof follows immediately from Lemma 3.1.   

 

Thus, a LS-IFo in two variables has been converted into two parts; the first one is an      -FoDE 

in     , while the other one is just a direct analytical solution of      that only depends on     . 

 

 

4. THE GENERAL SOLUTION OF      -FODE USING THE ADM  

In this section, we use the ADM to obtain the general solution of an      -FoDE. See [30, 31] for 

an overview of the ADM approach. Theorem 4.1 introduces a new approach for solving the non-

homogeneous LS-IFo system, while the case of homogeneous systems is addressed by corollary 4.2, i.e.; 

 

Theorem 4.1: The following LS-IFo: 

 

                            , (10(a)) 

 

                            , (10(b)) 

 

subject to the initial conditions 

 

                 (10(c)) 

 

has a solution of the form                     such that: 

 

         

∑ (    
         

            )
 

  
   

∑ ∑ (  
        

)    
     

                                      
    (11) 

 

and,  

 

         
 

   
(                            ), (12) 

 

      
             

      
   

     

      
                                  , (13) 

 

                         , (14) 
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and where          in which   *
      

      
+ such that      . 

 

Proof: Based on Lemma 3.1, system (10) is equivalent to (8), and so (12) is completely identified. Let us, 

now, employ the ADM to solve (8.b). By applying   on both sides of such equation, one obtains: 

 

                 
                                                    

         . (15) 

 

That is; 

 

             
                                                      

         . (16) 

 

Applying    on (16) yields; 

 

     

     (             )      
           

                                         ,

 (17) 

 

which can be written as 

 

     

   
             

      
   

     

      
       

       
                      (                 ).

 (18) 

 

Considering the ADM, we assume that the general solution of (18) takes the following general form: 

 

         ∑           
   , (19) 

 

in which 

 

      
             

      
   

     

      
                                  , (20) 

 

and,  

 

              
             

                         . (21) 

 

Now, we have the following claim that we wish to prove: 

 

          (    
         

            )
 

 

∑ (  
        

)    
     

                                    , (22) 

 

where       
         . 

By using induction on  , one observes that (22) is obvious for the base of induction. That is; when 

   , it’s clear that the statement is true. Now, assume that the statement for   is true, and the relation (22) 

is correct. It is sufficient to show that (22) is also correct for    ;    . It follows from (21) that: 

 

                
           

                 , (23) 

 

            

∑ (  
        

)    
       

                                         

∑ (  
        

)    
     

                                           

∑ (  
        

)    
     

                                          , (24) 
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or,  

 

            ∑ *(  
        

)    
     

                          (    
              

    
           )+  (    

         
            )

 
(    

         
            )  

(    
         

            )
   

, (25) 

 

which implies that (22) is also true for    . Now, since (19) and (25) yields the general solution described 

by (11), one has to verify (14). For this purpose, consider (12) again, and let        , then observe that all 

terms of (12) will be zero except three terms; 
 

   
 ,

  

   
      and 

    

   
  , i.e.; 

 

        
 

   
               , (26) 

 

which yields (14).   

 

Corollary 4.2: If     in system (10), then the solution                 of this system will be of the 

following form: 

 

       ∑ ∑ ( 
 
)                 

 
   

 
   , (27) 

 

and,  

 

       
 

   
(                        ), (28) 

 

where,  

 

      
           

      
                                 , (29) 

 

                         , (30) 

 

and where         and          in which   *
      

      
+ such that      . 

Proof: The proof is similar to Theorem 4.1.   

 

Corollary 4.3: The following homogeneous LS-IFo: 

 

                      , (31(a)) 

 

                      , (31(b)) 

 

subject to the initial conditions 

 

               , (31(c)) 

 

has a solution of the form                     such that: 

 

         ∑ ∑ (  
        

)    
     

                                    
 
   , (32) 

 

and,  

 

         
 

   
(                      ), (33) 

 

where 
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  , (34) 

                     (35) 

 

and where          in which   *
      

      
+ such that      . 

Proof: The proof can be directly deduced from Theorem 4.1 by assuming              .  

 

Corollary 4.4: The following homogeneous system: 

 

                        (36(a)) 

 

                        (36(b)) 

 

subject to the initial conditions 

 

               , (36(c)) 

 

has a solution of the form             such that 

 

       ∑ ∑ ( 
 
)                 

 
   

 
   , (37) 

 

and,  

 

       
 

   
(                  ), (38) 

 

where,  

 

      
     

      
    (39) 

 

                   , (40) 

 

and where         and          in which   *
      

      
+ such that      . 

Proof: The proof follows directly from Corollary 4.2 when                 

 

 

5. THE GENERAL SOLUTION OF NLS-IFO USING ADM  

This section introduces the general solution of the NLS-IFo using ADM. This can be made by 

extending the same technique used for handling the linear one. Such solution depends on the AP's, which 

form the basis for the ADM approach. In particular, the non-linear term, in this method, is usually identified 

using the AP's [19, 32], i.e., whenever the nonlinear term          ; where   is an unknown function that 

appears in the system, the AP (   ) yields an analytical function that is used to generate the general solution 

of the system [18]. These   's are generated to be analytical functions [18], and can be obtained by the 

following formula [19, 33]:  

 

   
 

  

  

   
   ∑     

 
     |

   
, (41) 

 

where   is a parameter introduced for convenience. However, Theorem 5.1 employs the ADM 

approach to solve NLS-IFo's. 

 

Theorem 5.1: The following NLS-IFo:  

 

                         (         ), (42(a)) 

 

                         (         ), (42(b)) 

 

subject to the initial conditions 
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               , (42(c)) 

 

has a solution of the form                     such that 

 

         ∑       
   , (43) 

 

and,  

 

         
 

   
(                         (         )), (44) 

 

where,  

 

      
    (         )      

      
   

     

      
  , (45(a)) 

 

          
             

                                          
            , (45(b)) 

 

and,  

 

                (         )       , (46) 

 

and where       ,               ∑   
 
   and               ∑   

 
    such that    and    are the 

AP's corresponding to       and       respectively, and          in which   *
      

      
+ such that 

     . 

Proof: From Lemma 3.1, system (42) is equivalent to (8), and so (44) is completely identified. Now, 

applying    and   on both sides of system (8.b) respectively, yields: 

 

        
    (         )      

      
   

     

      
       

          
                

    (         )      (     (         )       (         )). (47) 

 

Considering the ADM, the general solution of (47) is assumed as in (19) in which: 

 

      
    (         )      

      
   

     

      
  , (48(a)) 

 

and,  

 

          
             

                                                       
 (48(b)) 

 

which yields (43). Now, consider (44) and let the initial condition be        then it follows from Theorem 

4.1 that (46) is verified.   

Corollary 5.2: If     in system (42), then the solution                 will be of the following form:  

 

       ∑       
   , (49) 

 

and,  

 

       
 

   
                                   , (50) 

 

where,  

 

      
        (         )

      
  , (51(a)) 
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                                                            , (51(b)) 

 

and,  

 

                (         )       , (52) 

 

and where      ,               ∑   
 
   and               ∑   

 
    such that    and    are the 

AP's corresponding to    and    respectively,         and          in which   *
      

      
+ such 

that      . 

Proof: The proof is similar to that of Theorem 5.1.   

 

Remark 5.3: Observe that in the case when      , one can reverse the order of solution by solving 

         in terms of         , and proceed as discussed in Theorem 4.1. 

 

 

6. NUMERICAL EXAMPLES 

To highlight the main results of this work and to show the effectiveness of solving both linear and 

nonlinear fractional-order systems of incommensurate orders using the proposed method, three numerical 

examples in Electrical and Biomedical Engineering are investigated.  

Example 6.1: The human malady of ventricular arrhythmia or irregular heartbeat is treated 

clinically using the drug lidocaine. The model for the dynamics of the drug therapy that is valid for a special 

body weight can be described by the following homogeneous LS-IFo [34]: 

 

                          , (53(a)) 

 

                          , (53(b)) 

 

subject to the following physically significant initial data: 

 

The drug in the blood  

stream                                             (53(c)) 

 

where      is the amount of lidocaine in the blood stream, and      is the amount of lidocaine in body tissue. 

The exact solutions of (53) for      , and      is: 

 

                                   , (54(a)) 

 

                                       . (54(b)) 

 

In order to obtain the solutions of (53) using the proposed technique; we may rewrite this system in the 

following form: 

 

[
      

      
]   [

    
    

], (55) 

 

where   *
          
           

+, and consequently                and                  . 

Obviously, using (35) yields               , and by using (34), one obtains    in the following form: 

 

     
    

      
  , (56) 

 

and          can be obtained using (32) as follows: 

         

∑ ∑ (  
        

)                                                 *  
      

      
+          

 
     (57) 

 

i.e.; 
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+… , (58) 

 

and from (33),          can be expressed as: 

 

         
 

     
(                        ), (59) 

 
i.e.; 

 

         
    

          
 

      

             
 

       

               
 

          

                 
 

       

             
 

        

             
 

          

               
 … .  (60) 

 

In order to demonstrate the efficiency of the above results, Table 1 shows the error between the 

exact solution and our analytical solution using the proposed method over the time  , where         , 
     , and     . The behavior of the solution for system (53) for different values of   and   using 

our proposed method is shown in Figures 1 and 2. Actually, this solution can be used to estimate the 

maximum possible safe dosage    and the duration of time that the drug lidocaine is effective [34].  

 

 

  
 

Figure 1. The behavior of the solution            

using our proposed method for system (53) for 

different values of   and   

 

Figure 2. The behavior of the solution            

using our proposed method for system (53) for 

different values of   and   

 

 

Table 1. The error between the exact and our analytical solutions for system (53) over         , where 

     , and      
                                                                  

1 1.9277995480 1.9277995480 2.22040×10-16 0.0713262164 0.0713262164 1.24900×10-16 
5 1.7017974400 1.7017974400 2.22040×10-16 0.2796119909 0.2796119909 5.55110×10-17 

10 1.5159529100 1.5159529100 2.22040×10-16 0.4223494308 0.4223494308 1.66530×10-16 

15 1.3924776760 1.3924776760 3.81920×10-14 0.4905147616 0.4905147616 8.22950×10-13 

 

 

Example 6.2: Consider the following non-homogeneous LS-IFo: 

 

                    , (61(a)) 

 

                       , (61(b)) 

 

subject to the initial conditions,  

 

                   . (61(c)) 

 

Here, the exact solutions of (63) for       are of the form: 
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          ⁄     
√     

  
            

√     

  
             

√     

  
      √        ⁄     

√     

  
            

√     

  
             

√     

  
  

     
 

 (62(a)) 

 

      
  

     
(        ⁄    *

√     

  
+         *

√     

  
+
 

         *
√     

  
+
 

 

   √        ⁄    *
√     

  
+         *

√     

  
+
 

         *
√     

  
+
 

), (62(b)) 

 

One might rewrite system (61) in the following matrix form: 

 

[
      

      
]   [

    
    

]  [
     
     

], (63) 

 

where   *
   
    

+ and [
     
     

]  *
  
  

+. Then             and             . 

Using (14) yields       , and then by using (13), one might obtain    in the following form: 

 

     
 

      
                     (66) 

 

Thus,          can be obtained using (11) to be as follows: 

 

         ∑ ∑ (  
        

)                                *  
 

      
             

 
   

                + (65) 

 

          
  

      
 

     

        
 

       

        
 

      

         
 

        

         
 

      

         
 

        

         
 

      

         
 

        

         
 

      

         
 

        

         
 … . (66) 

 

Using (12) yields          which will be as: 

 

         
 

 
(                        ), (67) 

 

i.e.; 

 

           
  

       
 

   

        
 

   

        
 

   

        
 

   

        
 

   

        
 

   

        
 

   

        
 

     

       
 

      

        
 

      

        
 

      

        
 

      

        
    (68) 

 

For      , (66) and (68) will be, respectively, as: 

 

            
    

  
 

     

   
 

      

       
        

       
         

       
          

        
           

            (69) 

 

and,  

 

             
   

 
 

   

  
 

     

    
 

     

      
        

       
       

        
          

           . (70) 

 

Figure 3, however, shows a graphical comparison between the exact solution and our analytical 

solution using the proposed method, when       and     . Furthermore, the behavior of the 

solutions for system (61) for different values of   and   using our proposed method is shown in Figures 4 

and 5. 

 

Example 6.3: Consider the following NLS-IFo:  
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     , (71(a)) 

 

                                 , (71(b)) 

 

subject to the initial conditions 

 

                   . (71(c)) 

 

 

 
 

Figure 3. A comparison between the exact solutions             for system (61) and our analytical solutions 

                       , when       and      

 

 

  
 

Figure 4. The behavior of the solution 

           using our proposed method for system 

(61) for different values of   and   

 

Figure 5. The behavior of the solution            

using our proposed method for system (61) for 

different values of   and   

 

 

System (71) can be rewritten in the following matrix form: 

 

  [
    
    

]   [
    
    

]  [
             

             
]  (72) 

 

where   *
   

    
+ and [

             
             

]  [
 

 

 
     

               
]. Then,            and   

         . Using (46) yields     , and then    can be obtained from (45.a) to be as follows: 

 

     
   

      
. (73) 

 

Now, we can deal with the two non-linear terms;   (         )   
 

 
      ∑   

 
   and 

  (         )                  ∑   
 
   , by utilizing the AP's. This can be done by considering 

(41) again. However, some of these AP's for such nonlinear terms are given below:  

 

    
     

       
 

     

       
 

    

       
 

 

 
, (74) 

2 4 6 8 10
t

5

10

15

xPM(t,1,1)

x(t)

yPM(t,1,1)

y(t)
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    (75) 

 

   
     

        
 

     

             
 

            

              
 

            

                    
 

     

        
 

     

              
 

            

              
 

             

                     
    (76) 

 

   
     

        
 

     

              
 

     

             
 

            

              
 

            

                    
 

            

                    
    (77) 

 

and,  

 

   
    

       
     ⁄  

   

      
        (78) 

 

   
      

         
 

       

              
 

       

         
 

       

               
 

              

                
 

               

                
 

               

                
 

              

                
 

    

       
 

    

             
 

           

              
 

            

              
 

  √  
  

 
 

     
 

 
 

 
      

      
 

  √  
   

 
 

          
 

 
 
 

        

            
, (79) 

 

   

 
    

       
 

    

             
 

           

              
 

            

                    
 

    

        
 

     

              
 

            

              
 

            

                     
    (80) 

 

    
    

       
 

    

              
 

    

             
 

           

              
 

            

                    
 

            

                    
 

           

               
 

            

                     
    (81) 

 

For    , (45.b) will be: 

 

                                                    (82) 
 

Substituting (73) and (82) in (43), we obtain: 

 

           
   

      
 ∑ [                                         ]

 
     (83) 

 

Based on    given in (73); one can reach to the following general solution: 

 

           
   

      
 

  √  
 
   

  *
 

 
  +

 
      

      
 

      

         
 

    

       
 

  √  
 
    

  *
 

 
   +

 
       

       
 

       

          
 

   √  
 
      

   *
 

 
     +

 
          

          
 

         

            
   . (84) 

 

Hence;          can be obtained using (44) to be as: 

 

          (                                       )  (85) 

 

or; 
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  √  

 
   

   
 

 
   

 
  √  

 
    

        
 

 
   

 
        

       
 

      

      
 

        

            
 

   √  
  
    

  
 

 
         

+… . (86) 

 

The two solutions, (84) and (86), can be written, for      , as follow: 

 

              
    

 
 

    

  
 

    ⁄

 
 

     

   
 

    ⁄

  
 

      

   
 

       ⁄

   
 

       

    
 

      ⁄

   
    (87) 

 

           
   

 
 

    

 
 

     

  
 

      

   
 

     ⁄

  
 

       

    
 

       ⁄

   
 

        

     
 … . (88) 

 

For more insight; a comparison is graphically made in Figure 6 between (                     ) 

obtained by MS and our analytical solutions (                     ), followed by Figures 7-10 that 

illustrate the behavior of the solutions of system (71) for different values of   and  . Finally; Table 2 shows 

the error between such two solutions for      and     . 

 

 

 
 

Figure 6. A comparison between the solutions                         for system (71) and our analytical 

solutions                        , when       and      

 

 

  
 

Figure 7. The behavior of the solution            

using our proposed method for system (71) for 

different values of   and   

 

Figure 8. The behavior of the solution            

using our proposed method for system (71) for other 

different values of   and   
 

 

  
 

Figure 9. The behavior of the solution            

using our proposed method for system (71) for 

different values of   and  . 

 

Figure 10. The behavior of the solution            

using our proposed method for system (71) for other 

different values of   and   
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Table 2. The error between the exact solution and our analytical solution for system (71), where     
 and      

                                                      
0 1.0000000000 1.0000000000 0.000000 2.0000000000 2.0000000000 0.000000 
0.2 0.6599728109 0.6599728165 5.65×10-9 1.1996487780 1.1996488610 8.31×10-8 

0.4 0.4129012636 0.4129012782 1.46×10-8 0.7355566706 0.7355566359 3.47×10-8 

0.6 0.1949926708 0.1949926852 1.44×10-8 0.4835460881 0.4835459540 1.34×10-7 
0.8 -0.0873501663 -0.0873502275 6.12×10-8 0.4322677755 0.4322677252 5.03×10-8 

1.0 -0.5401748463 -0.5401746710 1.75×10-7 0.6789543701 0.6789497251 4.65×10-6 

 

 

7. CONCLUSION 

A new analytical method is constructed for solving linear and non-linear systems of 

incommensurate fractional-order. This proposed method is different from all other analytical methods; it can 

be applied by backward converting a coupled system into two equations; the first one is an explanation of one 

variable in terms of another, while the second equation is just a fractional-order differential equation (FoDE) 

of order    . The Adomian Decomposition Method (ADM) is implemented successfully to construct the 

solution of an      -FoDE. Finally, it was shown, by illustrating several graphical comparisons, that the 

proposed technique is simple and yet powerful analytic method for handling the systems under consideration. 
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