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In this paper, a new analytical method is developed for solving linear and
non-linear fractional-order coupled systems of incommensurate orders. The
system consists of two fractional-order differential equations of orders
0 < o, < 1. The proposed approach is performed by decoupling the system
into two fractional-order differential equations; the first one is a fractional-
order differential equation (FODE) of one variable of order (a + B), while the
second one depends on the solution of the first one. The general solution of
the coupled system is obtained using the adomian decomposition method
(ADM). The main ideas of this work are verified via several examples of
linear and nonlinear systems, and the numerical simulations are performed

- using mathematica.
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1. INTRODUCTION

Fractional-order Differential Equations (FoDEs) are well suited to model physical systems with
memory orfractal attributes, and they are increasingly utilized to model many problems in fluid dynamics,
viscoelasticity, biology, physics and engineering [1-5]. Several methods have been suggested to solve linear
and non-linear FODEs such as the Predictor Corrector Method (PCM) [6, 7], the Adomain Decomposition
Method (ADM) [2, 8-12], the Homotopy Perturbation Method (HPM) [13], the Variational Iteration Method
(VIM) [14-16], the Differential Transform Method (DTM) [17], and the Finite difference method [18, 19].
An analytical method for obtaining solutions of linear FODEs with Jumarie type derivative in terms of the
Mittag-Leffler functions and the generalized sine and cosine functions was presented in several papers see [7,
20-22]. Several non-linear phonemena are modeled by coupled FODEs such as the fractional-order Chuah’s,
Rassler's, Duffing's, and Stiff's fractional-order systems [7, 23]. The single-term Haar wavelet series (STHW)
method were introduced to solve singular stiff delay systems and non-linear singular systems in fluid
dynamics [23-25].

In this paper, linear and nonlinear incommensurate fractional-order systems in two variables, x(t)
and y(t), of order a and 8, 0 < a, 3 < 1, are considered. The linear system is first considered and converted
into two differential equations; one equation is of order a + 8, denoted by (a + B)-FoDE, that only depends
on y(t), while the analytical solution of the second variable, x(t), follows from the solution of the first part.
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The Adomian Decomposition Method (ADM) is implemented to obtain the analytical solution of the (o +
B)-FoDE. Similarly, the solution of the Non-Linear System of Incommensurate Fractional-order (NLS-I1Fo)
is also obtained by extending the same technique that used for the case of the linear one. Such solutions are
obtained using the Adomian Polynomials (AP's), which form the basis for the ADM.

This paper is outlined as follows: Next section introduces necessary definitions and preliminaries.
Section 3 introduces a method to convert a LS-IFo into an (a + B)-FODE in one variable. Section 4
introduces the ADM as a tool to solve the (a+ f)-FODE of linear incommensurate order systems. The
general solution of the nonlinear one is introduced in Section 5. Section 6 summarizes the main ideas of this
work via numerical simulations followed by conclusions and final remarks.

2. BASIC DEFINITIONS AND PRELIMINARIES

The Caputo's definition of fractional-order derivatives is adopted in this work. It is a modification of
the Riemann-Liouville definition, with the advantage of only using the initial conditions of the corresponding
integer-order derivatives that suites most physical system [26-28]. The following definitions and
preliminaries of fractional calculus are presented here for completeness.

Definition 2.1 [11]: Let f(t) be anintegrable piecewise continuous function on any finite subinterval
of (0, 4+o0), then the fractional integral of f(t) of order a is defined as:

1

Jf(t): = ‘F(—a) (O = 75 fy (=D (DTt > 0,a> 0. Q)

Definition 2.2 [11]: The Caputo fractional-order derivative is defined as:

)
DEf(t) = ! ft ) din—1<a<nmneN. )

r(n-a)”’0 (t-t)a+1i-n
Theorem 2.3 [11], [24]: The Caputo fractional-order derivative of the power function satisfies

ru+1) .y-a . _ _
a ra—arnt T I<a<nu>n—-1LueER
= ®)

On—1<a<nu<n—lLpueNneN.

Theorem 2.4 [3], [24]: The Riemann Liouville fractional-order integral of the power function satisfies

app r(u+1) uta _
Jet 7r(u+a+1)t ,a>0,u>—1. 4)

Theorem 25 [3]: Ifx > 0,a € Randn —1 < a < n. Then,

Dejef(t) = f()m EN. ®)

Theorem 2.6 [3]: If f is a continuous function on [a,b]and a = 0. Then,

JDUF(8) = () ~ TRZE S FHO),m € N. )

3. CONVERTING A LS-IFO INTO AN (a + B)-FODE

The Integral Transform Methods (ITM) such as Fourier Transform (FT), Laplace Transform (LT),
and Mellin Transform (MT) are used to solve a single FODE [29]. In the case of coupled systems of FoDEs, it
is necessary to employ specific techniques that are appropriate to the given problem. There are several
methods for solving such problems, see [29] for example. The proposed method in this work presents a new
direct technique that is competitive to that of the corresponding ones in which order conversion allows one to
simplify the solution method. For completeness, the following lemma outlines the conversion results, which
allows one to generate an (a + B)-FoDE from the coupled one.
Lemma 3.1: The following non-homogeneous LS-IFo:

Dx(t) = a11x(t) + apy(t) + f1(0), (7(2)
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DFy(t) = azx(t) + azy(t) + f(0), (7(b))

can be converted into the following equivalent system:

x(®) = = (DFy(©) = a2y (® - £,®), (8(@)
D*Fy(t) — a; DPy(t) — az, D*y(t) + det(A)y(t) = h(2), (8(b))
where A = [Zi ZZ] h(t) = DAf,(t) + ay, fi(t) — aq1f>(t), D and DP are the Caputo's fractional-order

derivatives; 0 < o, B < 1; and ay's are constants for i,j = 1,2 with a,; # 0, and where f; (t) and f,(t) are
continuous functions of t on some interval 1.
Corollary 3.2: If a = B in system (7), then the system will be equivalent to the following equations:

x(©) = .~ (D*Y(®) = a2y (®) = (1)), (9())

D*y(¢t) — tr(A)D%y(t) + det(A)y(t) = h(®), (9(b))

where 4 = [1 (2] and h(t) = D%£,(6) + @z () = @ fo(®).

Proof: The proof follows immediately from Lemma 3.1. m
Thus, a LS-1Fo in two variables has been converted into two parts; the first one is an (a + )-FoDE

in y(t), while the other one is just a direct analytical solution of x(t) that only depends on y(t).

4. THE GENERAL SOLUTION OF (a + B)-FODE USING THE ADM

In this section, we use the ADM to obtain the general solution of an (a + 3)-FODE. See [30, 31] for
an overview of the ADM approach. Theorem 4.1 introduces a new approach for solving the non-
homogeneous LS-IFo system, while the case of homogeneous systems is addressed by corollary 4.2, i.e.;

Theorem 4.1: The following LS-IFo:
D%x(t) = a1;x(t) + ay(0) + f1(2), (10(a))
DFy(t) = azx(t) + azy(t) + £(8), (10(b))
subject to the initial conditions
x(0) = v1,y(0) = vy, (10(c))

has a solution of the form (x(t, a, B), y(t, a, B)) such that:

vyt ap) = )

thf:o(au]a)’o + azz]‘BYO - b]a+ﬁ)’0) =

DA N (klr:zrk3) a1 K1 a,, k2 (—b)ks JkaatkaBrks(@tp)y (11)
and,

x(t,a,B) = 2= (DFy(t.@.B) — ary(t.a, ) = /D)), (12)

Yo=V2 t C_f?(fgljfzvz th — Pa(::i) tY+ [P (8) + ] (ap f1 () — ai1 £ (D)), (13)

€ = a1 + axv; + £,(0) = y'(0), (14)
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a a
and where b = det(A) in which 4 = [ai a;z] such that a,; # 0.

Proof: Based on Lemma 3.1, system (10) is equivalent to (8), and so (12) is completely identified. Let us,
now, employ the ADM to solve (8.b). By applying J*on both sides of such equation, one obtains:

Dﬁ)’(t) -y'(0) = a11]aDBY(t) + az;y(t) — azy(0) — bj*y(8) + J*(Df2 () + az1 f1(2) —
ai1/2(6)). (15)

That is;

DPy(t) = ¢ + ay J*DPy(t) + azy(t) — azv, — bJ%y(6) + fo(t) — £2(0) + J(az f1(8) —
ai1/2(6)). (16)

Applying J& on (16) yields;

y(t) =
v, +JP(c = azv, — £2(0)) + a1 JJPDPy + ayyJPy — bJ* Py + JE£,(6) + J* P (ay fi (8) — ay1 o (D)),
17
which can be written as
"0
—£(0)—
v, + 5 fzp(ﬁj)zzvz th — F‘Z:Ji) tY+ ay, ]y + ax )Py — bJ* Py + JE£, (D) +]a+ﬁ(a21f1(t) - a11f2(t))-
(18)
Considering the ADM, we assume that the general solution of (18) takes the following general form:
y(t' (X,,B) = Z;?:Oyn(tl a,,B), (19)
in which
—£(0)—
Yo = vy + LTI (S g JBF (1) + ] (a3 £1(8) — ana fo(0)), (20)
and,
Yie(t, @, B) = a1J Y1 (t) + aza)P yi1 (£) = bJ Py _1 (), ke = 1. (21)
Now, we have the following claim that we wish to prove:
k
vt aB) = (‘111]“)’0 + ay/Py, — b]aw%) =
Zk1+k2+k3=k (ki.’icz.k3) ;1" ay," (_b)k3]k1a+k2‘8+k3(a+ﬁ))’0, (22)

where (J%y,)? = J*Py,.

By using induction on k, one observes that (22) is obvious for the base of induction. That is; when
k = 1, it’s clear that the statement is true. Now, assume that the statement for k is true, and the relation (22)
is correct. It is sufficient to show that (22) is also correct for k + 1; k = 1. It follows from (21) that:

Yir1(t @ B) = a1 Vi (1) + azo)Pyic (£) — b Py, (1), (23)

yk+1(t! O.’,ﬁ) =

k
Zk1+k2+k3=k (k1.kz.k3) a1
k ko+1 k3 tkqia+(ko+1)f+kz(a+
a;,%ray, k2t (—=p)ks ks (k2+1)B+k3( ﬁ)y0+

k1+1a22k2 (_b)k3](k1+1)a+k2B+k3(a+,8)y0 +

k
Zkl +ky+k3=k (k1vk2vk3)
«(

a11k1a22k2 (_b)k3+1]k1a+k2B+(k3+1)(a+B)y0, (24)

k
Zk1 +kytks= kl,kz,k3)
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or,

yk+1(t' a,ﬁ) = Zk1+k2+k3=k [(kl,k,'.cz,k3) a11k1a22k2 (_b)k3]k1a+k2ﬁ+k3(a+ﬁ)yo (%1]“)’0 +
k
az,JPyo — b]a+ﬁyo)] = (a11]a3’0 + az,)Pyo — b]a+ﬁ3’o) (a11]a3’0 + ag, )Py — b]lHBYO) =
k+1
(a11]a3’0 + a22]ﬁy0 - b]a+'8YO) ) (25)

which implies that (22) is also true for k + 1. Now, since (19) and (25) yields the general solution described
by (11), one has to verify (14). For this purpose, consider (12) again, and let x(0) = v, then observe that all

terms of (12) will be zero except three terms; aica_—1 f,(0) and —:2
21 21

2 H .
vy, 0.8
21

x(0) = v = —(c = £(0) — az,vy), (26)
which yields (14). m

Corollary 4.2: If a =B in system (10), then the solution (x(t, ), y(t,a)) of this system will be of the
following form:

y(t,@) = Erno Sieo()a" (=b) ey, (27)
and,

x(t,a) = o~ (D*y(t, @) = azy(t, @) = f,(D)), (28)
where,

Yo = vy + TEOELE L 4 4 (8) + ) [az £ (8) — an fo(0)], (29)

€ = ay vy + ayv, + f,(0) = y'(0), (30)

and where a = tr(A) and b = det(A) in which A = [:i 22] such that a,; # 0.
Proof: The proof is similar to Theorem4.1. m

Corollary 4.3: The following homogeneous LS-IFo:
D%x(t) = ay1x(t) + a;,y(t), (31(a))
DPy(t) = apx(t) + azy(t), (31(b))
subject to the initial conditions
x(0) = v;,y(0) = vy, (31(c))
has a solution of the form (x(t, a, B), y(t, @, B)) such that:
V(& @ B) = o By wiegrismn (e, ) G122 (—b) s Jra ke Hhs @y, (32)

and,

x(t,0,8) = = (DPy(t @ B) - azy(t, @, ), (33)

21

where
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— €-Gz2V2 ,.p _ A11V2 ,q
Yo =v2 r(p+1) t r(a+1)t : (34)
€ = az1V1 + agzv, = y'(0), (35)

and where b = det(A) in which A = [Z;i Z;E] such that a,; # 0.
Proof: The proof can be directly deduced from Theorem 4.1 by assuming f;(t) = f,(t) = 0.m

Corollary 4.4: The following homogeneous system:
D%x(t) = ay1x(t) + a;,y(t), (36(a))
D*y(t) = az;x(t) + az,y(0), (36(b))
subject to the initial conditions
x(0) = v,,y(0) = vy, (36(c))

has a solution of the form (x(t), y(t)) such that

y(t, @) = Bio Xi=o(p)a"  (=b) ey, (37)
and,

x@@=£ﬂmﬂﬁ@—%ﬂ@@) (38)
where,

Yo =V + If(_;vlz) t%, (39)

C = a1V + ayv, = y'(0), (40)

and where a = tr(A) and b = det(A) in which 4 = [Zi ZZ] such that ay; # 0.
Proof: The proof follows directly from Corollary 4.2 when f,(t) = f,(t) = 0. m

5. THE GENERAL SOLUTION OF NLS-IFO USING ADM

This section introduces the general solution of the NLS-IFo using ADM. This can be made by
extending the same technique used for handling the linear one. Such solution depends on the AP's, which
form the basis for the ADM approach. In particular, the non-linear term, in this method, is usually identified
using the AP's [19, 32], i.e., whenever the nonlinear term N(v) = g(v); where v is an unknown function that
appears in the system, the AP (A,) yields an analytical function that is used to generate the general solution
of the system [18]. These A,'s are generated to be analytical functions [18], and can be obtained by the
following formula [19, 33]:

14"
Ay = ——
n!dan

N[Zio 20D (41)

where A is a parameter introduced for convenience. However, Theorem 5.1 employs the ADM
approach to solve NLS-1Fo's.

Theorem 5.1: The following NLS-IFo:
Dx(t) = ay,x(8) + a1,y (8) + g1 (x(0), y(®)), (42(2)

DPy(t) = apx(t) + azy(t) + g2 (x(1), y(®), (42(b))

subject to the initial conditions

Analytical solutions of linear and non-linear incommensurate fractional-order (Ramzi B. Albadarneh)
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X(O) =7Vn }’(0) =V, (42(C))

has a solution of the form (x(t, o, B), y(t, &, B)) such that

y(t, a,B) = Xn=oyn(t), (43)

and,

x(t,a,B) = - (DPy(t, @, ) — azy(t,a,B) = ga(x(0), ¥(©))), (44)
where,

_ c=g2(x(0).y(0))-az2v2 .g  a11v2

Yo=v2 t r(g+1) t r(a+1) t%, (45())

Y (8) = @11 %Y1 (8) + azaJPyy-1(8) = BJ**By, 1 (©) + JP By + J**F (az1An-1 —
a;1By_1),n =1, (45(b))
and,

¢ = ay vy + azv; + g2(x(0),(0)) = y'(0), (46)

and where0 < o, B < 1, g, (x(1), y(t)) = Xp=o Apand g, (x(t), y(t)) = Xax, By such that A, and B, are the
AP's corresponding to g, (-) and g,(-) respectively, and b = det(A) in which A = [Z;i :;z] such that

a1 # 0.
Proof: From Lemma 3.1, system (42) is equivalent to (8), and so (44) is completely identified. Now,
applying J* and J®on both sides of system (8.b) respectively, yields:

_ c=g2(x(0y(0))-azsv2 g a11v2 g a B _ pratph
y@) =v, + T t @D t% + a1 /Y () + axJPy() — b]* Fy(t) +

]Bgz(x(t)’Y(f)) + JotF (a2191(x(t):)’(t)) - a11gz(x(t)')’(t)))- (47)

Considering the ADM, the general solution of (47) is assumed as in (19) in which:

_ c—g2(x(0),y(0))—az,v, B _ G112 .q
Yo=v2 ¥ r(g+1) r@+1) (48(2))

and,

Yu () = a14)*Yn-1 () + az2)Pyn_1(t) — b]** Py, (t) + JPBy_y + J**P(az14n_1 —a11Bn_)n 2 1,

(48(b))

which yields (43). Now, consider (44) and let the initial condition be x(0) = v,then it follows from Theorem
4.1 that (46) is verified. m
Corollary 5.2: If o = B in system (42), then the solution (x(t, &), y(t, o)) will be of the following form:

y(t @) = Yo ya (), (49)
and,

x(t a) = %21 (D%y(t, @) = azy(t, @) — g2 (x(1), y(£)) ), (50)
where,

Yo =, + c—auz—rg(z(fl(f).y(o)) ta (51(a))
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Yn(®) = aJ%yn_1(t) — bfza)’n—1(t) +J%Bn_1 +]2a[a21An—1 —ay1Bp_qin =1, (51(b))

and,
C = 0a1V1 + AV, + gz(x(O),y(O)) =y'(0), (52)

and where 0 < @ <1, g, (x(t),y(t)) = Ym0 Anand g,(x(t),¥(t)) = Ym0 B, such that A,, and B,, are the
AP's corresponding to g, and g, respectively, a = tr(A) and b = det(A4) in which 4 = [Z; Z;z] such

that a,; # 0.
Proof: The proof is similar to that of Theorem 5.1. m

Remark 5.3: Observe that in the case when a,; # 0, one can reverse the order of solution by solving
y(t, a, ) interms of x(t, @, B), and proceed as discussed in Theorem 4.1.

6. NUMERICAL EXAMPLES

To highlight the main results of this work and to show the effectiveness of solving both linear and
nonlinear fractional-order systems of incommensurate orders using the proposed method, three numerical
examples in Electrical and Biomedical Engineering are investigated.

Example 6.1: The human malady of ventricular arrhythmia or irregular heartbeat is treated
clinically using the drug lidocaine. The model for the dynamics of the drug therapy that is valid for a special
body weight can be described by the following homogeneous LS-1Fo [34]:

D%x(t) = —0.09x(t) + 0.038y(t), (53(a))
DAy(t) = 0.066x(t) — 0.038y(t), (53(b))
subject to the following physically significant initial data:

The drug in the blood
stream= x(0) = v; = 0, The injection dosage = y(0) = v, = y*. (53(c))

where x(t) is the amount of lidocaine in the blood stream, and y(t) is the amount of lidocaine in body tissue.
The exact solutions of (53) fora =g =1,and y* = 2 is:

x(t) - —0.6735(6_0'1204t _ e—0.0076 t), (54(&))
y(t) = 0.5393e701204¢ 1 1 4608 ¢~0-0076¢, (54(b))

In order to obtain the solutions of (53) using the proposed technique; we may rewrite this system in the
following form:

DEx(t)] _ , [x(®
Pyl = [ ®r (%)
_1-0.09 0.038 _ _ _ _

where 4 = [0.066 —0.038]’ and consequently a = tr(4) = —0.128 and b = det(A) = 0.000912.

Obviously, using (35) yields ¢ = y'(0) = —0.076, and by using (34), one obtains y, in the following form:

018 4

Yo=2+ rant (56)
and y(t, a, B) can be obtained using (32) as follows:

y(t o, p) =
S50 Dyt (i ey ) (—0-09)¥5(—0.038)¥2 (=0.000912) s JKaa+kah+hs(@t®) [3 4

0.18t%
r(a+1)l’

(57)

i.e.;

Analytical solutions of linear and non-linear incommensurate fractional-order (Ramzi B. Albadarneh)



784 O ISSN: 2502-4752
19¢h 627t%+tF 5643¢20+h 50787¢t3%+8
ytap)=2- 2500(148) | 125x103r(1+a+B)  125x104T(142a+B) & 125x107Tr(1+3a+B)
457083¢49+B 4113747¢5%+F  37023723t00+F (58)
125x10°r (1+4a+B)  125x1011r(1+5a+B) 125x1013r(1+6a+p) "'’
and from (33), x(t, a, B) can be expressed as:
x(t, @, ) = ——(DPy(t, a, f) + 0.038y(t, @, B)), (59)
i.e.;
x(t,a,B) = 19t% 17162 361t*+B 29241t29+6 1539t3%
r T 250r(a+1)  25x103T(2a+1)  125x103'(a+B+1) = 6875x10*r(2a+f+1) = 25x105 I'(3a+1)
13851t%% 29241328 (60)

- +....
25x108Ir'(4a+1) 55%107 r(3a+B+1)

In order to demonstrate the efficiency of the above results, Table 1 shows the error between the

exact solution and our analytical solution using the proposed method over the time t, where t € [0,15],
a = =1, and n = 20. The behavior of the solution for system (53) for different values of @ and g using
our proposed method is shown in Figures 1 and 2. Actually, this solution can be used to estimate the
maximum possible safe dosage y* and the duration of time that the drug lidocaine is effective [34].

— ri1) — x(f)

Feult, 09,09

— Ju(t,09,07

)
Jeulr, 0.8,09)
)
)

— Ju(f,05,08

Joy(f,0.9,09
Hou(f, 0.8,0.9
Joy(f,09,07
Houlf, 0.7,0.8

)
)
)
)

Figure 1. The behavior of the solution ypy, (¢, a, 8)
using our proposed method for system (53) for
different values of a and 8

Figure 2. The behavior of the solution xpy, (t, a, 8)
using our proposed method for system (53) for
different values of « and 8

Table 1. The error between the exact and our analytical solutions for system (53) over t € [0,15], where
a=pB=1andn =20

t Yeu(t a, ) Yexace () |Yem = YExactl Xpu (£) Xgxace (t) [XpM = XExactl
1 19277995480 1.9277995480 2.22040x10°  0.0713262164 0.0713262164 1.24900x107°
5 17017974400 1.7017974400 2.22040x107®  0.2796119909 0.2796119909 5.55110x10™
10  1.5159529100 15159529100 2.22040x10™°  0.4223494308  0.4223494308  1.66530x10°
15 13924776760  1.3924776760  3.81920x10™*  0.4905147616  0.4905147616 8.22950x10™
Example 6.2: Consider the following non-homogeneous LS-I1Fo:
D%x(t) = x(t) — 2y(t) + 2t, (61(a)
DPy(t) = 2x(t) — 0.9 y(t) - 3, (61(b))
subject to the initial conditions,
x(0) =v; =1,y(0) = v, = 0. (61(c))
Here, the exact solutions of (63) for « = 8 = 1 are of the form:
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x(t) =
~90683et/20Cos[ Voot |+147382C0s [V ae |2 +32922tCos[ |2 +457\ 1239t/ 20Sin o2 4147382 Sin[ |2 +32922 Sin[* oo ]?
56699 !
(62(a))
y(t) = - (5723ef/ZOCos [”23‘”] — 5723Cos [“23 t] — 7316tCos [“23 t]
56699
205V1239e"/20Sin [F2| — 57235in [“2 t] — 7316tSin [ ) (62(h))
One might rewrite system (61) in the following matrix form:
Dx()] _ A[FO1 L [AO
B ' (63)
DPy)] y(t) "o
1 -2 fl(t)] 2t
where A = n = .Thena =tr(4A) =19and b = A) = 4.9.
erea=[y oo and || =[%5] Thena = er(a) = 19.and b = dera) = 49
Using (14) yields ¢ = —2.1, and then by using (13), one might obtain y, in the following form:
-1 _ a_ B a+p
Yo ram I3 + (4t + 3). (66)
Thus, y(t, @, B) can be obtained using (11) to be as follows:
y(t,a B) = Zl?=02k1+k2+k3=k (k1 Kok ) (0. 9)k2( 4. 9)k3]k1a+kzﬁ+k3(ot+ﬁ) [1 - [‘(a+1) o —
JP3) + 7+ (4t + 3) (65)
B 2ta+B atlta+p 2t2a+p atlt2a+p 2¢3a+h atlt3a+p
y(t a ﬁ) Fu+ﬁ) r(i+a+p) r+a+p) rQ@+2a+p) r@+2a+p) r@+3a+p) r2+3a+p)
2t4a+B 4_t1+4-a+,6’ 2t5u+B 4t1+5a+B
r(1+4a+p) rQ2+4a+p) Tr1+5a+p) T Q+5a+p) (66)
Using (12) yields x(t, a, ) which will be as:
x(t,a, ) = (DPy(t,a, ) — 0.9y(t, a, B) +3), (67)
i.e.;
ta tZa’ t3(1 t4-(1 tSa t6ll t7ll tSlZ
x(ta,p) =1+ r(a+1) + ra+1) + r(3a+1) + r(4a+1) + r(ca+1) + r(ea+1) + r(7a+1) + r8a+1)
2ta+1 2t2(x+1 2t3a+1 2t4a+1 2t5a+1
I'(a+2) r2a+2) r(a+2) r(4a+2) rsa+2) (68)
Fora = B = 1, (66) and (68) will be, respectively, as:
209t? | 739t 8251t*  237341t5 = 2320469t° = 75896179t7  643449211t8
y(t L) =-t+ _+ 600  24x103 12105 72%108 504x107  4032x10° te (69)
and,
3 4 5 6 7 8
x(t 1 1) =1+t + s5t° ZL_ 779t 461t 241951t 99041t _ 74905769t (70)

15 1200 6x10% 36x105 252x106 2016x107

Figure 3, however, shows a graphical comparison between the exact solution and our analytical
solution using the proposed method, when « = 8 =1 and n = 30. Furthermore, the behavior of the
solutions for system (61) for different values of @ and S using our proposed method is shown in Figures 4
and 5.

Example 6.3: Consider the following NLS-IFo:
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Dex(t) = —4y(t) —2y* (1), (71(2))
DBy(t) = —x(t) — y(t) + y?(t) — 5t3 + 2t2°, (71(b))
subject to the initial conditions

x(0)=v; =2,y(0) =v, =1 (71(c))
15+ f‘ho
<x \/ == Xpm(t,1,1)
10+ , Ve ! —— X(t)
N // \ —— ypm(t,1,1)
= \J —— y(t)

Figure 3. A comparison between the exact solutions (x(t), y(t)) for system (61) and our analytical solutions
(xpp(t,1,1), ypy(t,1,1)),whena = g =1 and n = 30

\!
/

5 — ¥ b — x()
Jeu(f,0.9,0.9) so(7,09,09)
o Jeu(t,09,0.8) 4 Xoy(£,09,08)
— Jeu(f,0.9,07) — x(£,09,07)
— Ju(?,0.8,0.8) , — xy(£,0.8,08)

1 2 3 4

Figure 4. The behavior of the solution Figure 5. The behavior of the solution xpy, (t, a, 8)
veum (t, a, B) using our proposed method for system using our proposed method for system (61) for
(61) for different values of a and g different values of a and S

System (71) can be rewritten in the following matrix form:

x(t) x(0] , [91(x(®), y()
e R ] R e (72)
0 4] ang m@@wqu[ -39’

-1 -1 g.(x(t),y(t)) y2(¢£) — 5¢3 + 2¢25
det(A) = —4. Using (46) yields ¢ = —2, and then y, can be obtained from (45.a) to be as follows:

where A = [ . Then, a=tr(A)=-1 and b =

_atf
r(g+1)’

Yo = (73)
Now, we can deal with the two non-linear terms; gl(x(t),y(t)) = —%y3(t) =y Azand

9:(x(@®),y(®) = y*(t) — 5t3 + 2t*° = ¥_, B,, by utilizing the AP's. This can be done by considering
(41) again. However, some of these AP's for such nonlinear terms are given below:
15¢28 1038 15t8 5

Ao =~ r(B+1)? + rg+1)3 + 2r(B+1) 4 (74)
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A= — 315¢%+E 315¢%+2F 465t0+28 315¢%+36 _ 465t%+36 _
1= 16I'(a+B+1)  4Ar(B+1)r(a+p+1) 8r(a+2f+1) 4r(f+1)2r(a+p+1) 2r(B+1)r(a+2p+1)
225I (2B+1)t*+3h 465t0+4B
( ﬁ+ ) + ."’ (75)
ar(B+1)2r(a+3p+1)  2r(B+1)2r(a+2p+1)
AZ =
15¢38 30t4P 15Ir(2B+1)t*F 30r(3p+1)t4P 15¢4B 90¢58

2r(3+1) r(B+1)r(3p+1) r(B+1)2r@4p+1) rB+1)rp+1)r4p+1) rep+1)2  rB+1)2r(3+1)
60 (2B+1)t5F 120 r(3p+1)t5F

r(B+1)3r4p+1) r(B+1)2rp+1)r4p+1) o (76)
A. = 1564 30t58 _ 30t56 _1sr@ep+nesE 30r(3p+1)t5h .
3 7 2r@ap+1) r@EB+Ur@E+1)  r(B+0)r@p+1) Ir(B+1)2r(Gp+1)  r(B+1)rB+1)r(sp+1)
30r(ap+1)t5F L 77)
r(f+1)r(3+1)r(sg+1) !
and,
a2k 5/2 4th 3
Bo =t 2t gy S+ L (78)
B = 2198 21t%+28 _3169%2F 62t%+38 30r(p+1tetsk
17 or(a+B+1) T(B+VI(a+B+1) T(a+2B+1) ' [(B+DI(a+2f+1) = T'(B+1)2r(a+35+1)
60rB+1t¥HF  20r(3p+1)teHh 40r(p+1*+SE  442P gt3h 8r(2p+1)t3h
r(f+1)3r(a+3p+1) r(B+1)3r(a+4p+1) rB+1)*r(a+4p+1) rRp+1) TrB+1rep+1) r(B+1)2r(3p+1)
5 5
16rp+1e*f 1svmPtz  eorht3  isymctPtz 120t26+3 (79)
r(B+1)3r(3p+1) zr(3+%) r(B+4) F(ﬁ+1)1‘(ﬁ+§) r(B+1)r(B+4)'
Bz =
a3k gt4h 8r(2p+1)t*f 16r(3p+1)t*P attB 16t58 _
r(3p+1) r@B+Or@p+1) rp+1)2r@p+1) rE+Orep+Ur@p+1) rep+1%2  r(p+12r(3+1)
16r2p+1t5F 32r3p+1t5k 4o (80)
r(B+1)3r@ap+1) r(B+1)2r2p+1)r(4p+1) ’
B. = _ 4t4P 8¢5k 8¢5k 8r(2p+1)t5h 16r(3p+1)t58
3~ r@ap+1) rep+r@p+1) rB+0)rap+1) rE+1)2rGLE+1)  rE+Orp+1)r(LE+1)
16r(4p+1)t5F srp+esh 32r(3p+1)t%8 (81)
r(B+r@p+1r(sp+1) rep+1)2r(p+1) rB+Or2p+1)2r4p+1) '
Forn = 1, (45.b) will be:
Ya(®) = =JPyu_s(® + 4By, 1 (t) + JPBpy — ] (Ap)n 2 1 (82)

Substituting (73) and (82) in (43), we obtain:

2th
r(g+1)

ytap)=1- + Z%°=1[_]BYn—1(t) +4J%%Fy, 1 (6) +JPBy_4 _]a+B(An—1)]- (83)

Based on y, given in (73); one can reach to the following general solution:

5 5
_ 2t isymeztP o zo3tB | 21¢0tB 228 1symeat?P gor3+2p
y(t,a,ﬁ)—l—r[ - _

Siat2p
41t2+2B 465VTt2 465t3ta+2zp 651t20+28

1+8] 4r[§+ﬁ] rla+p] = 4rfi+a+p] r[1+2p] 4p[§+25] rl4+2p]

arfi+a+2f] | 1er[l+a+2p]  2rla+a+2p] | 16r(1+2a+26] +oe (84)
Hence; x(t, a, 8) can be obtained using (44) to be as:
x(t,a,B) = —(DPy(t,a,B) + y(t,a, B) — y2(t, a, B) + 5t° — 2t%%), (85)

or;
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5 5
21t%  4e?F atP  225m5t2F 15vmeztP 15ymez 2P _900t6+28
ari+al  T[4P1? " T[1+B]  16Me+f]2  2r[c+p]  F[+BIrZ+p]  Tl4+B1?

11
60t3+8 120¢3+28 225Vme 2 T3P

x(t,a,B) =2 —

s 86
r[4+B]  T[1+BIM[4+B] * I[i+pIr[a+p) (80)
The two solutions, (84) and (86), can be written, for a« = g = 1, as follow:
13t2 173 | 4t7/2 289t* | 8t%2  1007t5  148t1Y/2  11479t6  26t13/2
y(t 1) =1-2t+ 8 24 7 384 63 960 693 o216 ez TV (87)
21t 31¢2  883t3  3827t* 6292 60011t5 | 956t11/2 1378676
x(t,1,1)=2—-——+—"— + - - — (88)
4 96 384 63 7680 693 23040

For more insight; a comparison is graphically made in Figure 6 between (xys(t, 1,1), yms(t, 1,1))
obtained by MS and our analytical solutions (xpm(t, 1,1),ypm(t, 1,1)), followed by Figures 7-10 that
illustrate the behavior of the solutions of system (71) for different values of « and . Finally; Table 2 shows
the error between such two solutions for a = § = 1and n = 20.

— Xpu(t,1,1)
—— x(t)
—— yem(t,1,1)
—— y(t)

L L L L Loy
0.2 0.4 0.6 A 1.0
051

Figure 6. A comparison between the solutions (xys(t, 1,1), yms(t, 1,1)) for system (71) and our analytical
solutions (xpym(t, 1,1), ypm(t, 1,1)), whena = B = 1 and n = 20

- Yus(t,1,1) === yms(t,1,1)
~— — yem(t,1,1) yem(t,1,1)
S —Sa yeu(t,0.9,0.9) yeu(t,0.9,1)
") e Jon(.0.8,0.8) yem(t,0.8,1)
~ yeu(t.0.7,0.7) Lt yem(t,0.7,1)
N\ yem(t,0.6,0.6) yem(t,0.6,1)

~05|

Figure 7. The behavior of the solution ypu(t, o, B) Figure 8. The behavior of the solution ypp (t, a, )
using our proposed method for system (71) for using our proposed method for system (71) for other
different values of a and 8 different values of a and 3

B ) —=== xws(t1.1)
xpm(t,1,1) xpm(t,1,1)
xpwm(t,0.9,0.9) xpm(£,0.9,1)

——— Xpm(t,0.8,0.8) Xpm(t,0.8,1)

——— Xpm(t,0.7,0.7) : . xp(1,0.7,1)

— Xpu(t,0.6,0.6) — O 1.0 xpm(t,0.6,1)

_osf
0.2 0.4 06 08 70! 1.0

Figure 9. The behavior of the solution xpy (t, o, B) Figure 10. The behavior of the solution xpp (t, o, B)
using our proposed method for system (71) for using our proposed method for system (71) for other
different values of a and B. different values of a and B
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Table 2. The error between the exact solution and our analytical solution for system (71), where o« = 8 =

7.

land n = 20
t vem(t o, B) yus(® lypm — sl Xpy (£) xus(t) [xpm — Xwis|
0 1.0000000000 1.0000000000 0.000000 2.0000000000 2.0000000000 0.000000
0.2 0.6599728109 0.6599728165 5.65%x10°° 11996487780 1.1996488610 8.31x10
0.4 0.4129012636 0.4129012782 1.46x108 0.7355566706  0.7355566359  3.47x10°
0.6 0.1949926708 0.1949926852 1.44x108 0.4835460881  0.4835459540  1.34x107
0.8 -0.0873501663 -0.0873502275 6.12x10® 0.4322677755 0.4322677252 5.03x10°
1.0 -0.5401748463 -0.5401746710 1.75x107 0.6789543701  0.6789497251  4.65x10°

CONCLUSION
A new analytical method is constructed for solving linear and non-linear systems of

incommensurate fractional-order. This proposed method is different from all other analytical methods; it can
be applied by backward converting a coupled system into two equations; the first one is an explanation of one
variable in terms of another, while the second equation is just a fractional-order differential equation (FoDE)
of order a + B. The Adomian Decomposition Method (ADM) is implemented successfully to construct the
solution of an (a + B)-FoDE. Finally, it was shown, by illustrating several graphical comparisons, that the
proposed technique is simple and yet powerful analytic method for handling the systems under consideration.
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