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 This paper deal with the numerical method, based on the operational matrices 

of the Haar wavelet orthonormal functions approach to approximate solutions 
to a class of coupled systems of time-fractional order partial differential 
equations (FPDEs.). By introducing the fractional derivative of the Caputo 
sense, to avoid the tedious calculations and to promote the study of wavelets 
to beginners, we use the integration property of this method with the aid of 
the aforesaid orthogonal matrices which convert the coupled system under 
some consideration into an easily algebraic system of Lyapunov or Sylvester 
equation type. The advantage of the present method, including the simple 
computation, computer-oriented, which requires less space to store, time-

efficient, and it can be applied for solving integer (fractional) order partial 
differential equations. Some specific and illustrating examples have been 
given; figures are used to show the efficiency, as well as the accuracy of the, 
achieved approximated results. All numerical calculations in this paper have 
been carried out with MATLAB. 
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1. INTRODUCTION  

The subject of fractional calculus is a branch of applied mathematics which deal with derivatives 

and integrals of any arbitrary orders. In this study, we introduce fractional order partial differential equations 

(FPDEs) which represent an effective tool to describe several certain real physical phenomena. Most of the 

engineering and physical processes are naturally led to (FPDEs), such as damping laws, dynamical processes 

in fluid, and porous structure [1, 2]. FPDEs appear also in the control theory of dynamical systems, when the 

controlled system is delineated, most studies show that, the fractional-order controller can provide better 

performance than the controller with an integer order. Also, most coupled systems of FPDEs can be found in 
biomechanics, as the modeling phenomena of electrical activity in the heart [3-5]. Furthermore, it appears in 

solid-state physics and mechanics, as the coupled system is described by the dynamics of multi-deformable 

bodies coupled with standard light fractional order discrete continuum layers [6-9]. And since most of FPDEs 

do not have exact analytic solutions, so the branch dealing with an approximate numerical solution of this 

type of differential equations has attracted the attention of many researchers in recent years. Some of these 

methods are; Adomain decomposition method (ADM) [10]. The generalized differentials transform method 

(GDTM) [11]. Variation iteration method (VIM) [12]. Wavelet method (WM) [13]. Generalized block pulse 

operational matrix method (GBPM) [14]. The homotopy perturbation method (HPM) and Stehfest's 
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numerical algorithm for the calculation of inverse (LT) [15], etc. In this study, we focus on the numerical 

method of solving a coupled system of the fractional partial differential equation based on the operational 

matrices of Haar wavelet orthonormal functions. 

The main aim of this study is to obtain fast and effective algorithms that are suitable for digital 

computers. The rest of this paper is organized as follows: In Section 2, we recall some necessary definitions 

of the fractional calculus theory to make this article self-contained. The Harr wavelet concept has been 

presented in Section 3. Section 4 is devoted to the operational matrices of the Haar wavelet, illustrating 

examples of the applied method is introduced in Section 5. Finally, conclusion and future studies are 

introduced in Section 6. 

 
 

2. PRELIMINARIES 

This section is devoted to some fundamental and necessary definitions of the theory of fractional 

calculus, which are required for building up our outcomes [16, 17].  

Definition 1: 

A real function Rtxtxu   ,),,( , 0t  is said to be in the space R    , C , if there exist a real 

number  >p , such that ),(),( 1 txuttxu p , where )),0[(),(1  RCtxu , and it is said to be in space 

nC  
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n

n

t

txu ),(
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Definition 2: 

The (left sided) Riemann-Liouville fractional integral operator )( j  of order 0> , of a function

1),(     ,C txu , with respect to t is defined as: 
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Definition 3: 

The (left sided) fractional derivative operator 

t

c D  of order 0 , of a function

1),(     , C txu , with respect to "t" in the Caputo sense is defined as, see [18]: 
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Where nn  <1 , n
 
,  n  and   is the greatest positive integer function. The 

fractional derivative of order  in the sense of Caputo is also defined as. 

),(),( txuDjtxuD r

t

r

t
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 
, where 

r

tD is the usual differential operator of order r. The relation between 

Caputo differential operator and Riemann – Liouville integral operator is given by the expression: 
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3. HAAR WAVELETS 

A wavelet is a mathematical function used in signal processing and image compression, in the first 

applied in geophysics to get pictures of layers in subsurface rock, which are used in oil and mineral 

exploration. One of the popular families of wavelets is the Haar wavelet, it is the oldest wavelet, it was 

introduced by the Hungarian mathematician Alfred Haar in 1909, and the wavelets theory started much in the 

1980s. It is a popular topic in diverse fields of engineering and science, the Haar wavelet is also considered 

the first known simplest wavelet because it was consisting of a piecewise constant function, that take only the 

three values 0,1 and -1. In the last two decades, the subject of wavelets theory has been playing an important 
role in many computing mathematical scientists, especially in time-frequency analysis, signal analysis, and 

numerical analysis, wavelet technique enables us to decomposed different complicated functions into a 

summation of basic functions, as well as each basic function can be generated from dilation and translation of 

a mother wavelet function. Consequently, the wavelet analysis of functions is more accurately described and 

faster than Fourier analysis. Many studies are focusing on the method of orthogonal polynomial and 

functions, to obtain an effective algorithm that can be suitable for adigital computer. Such as anumerical 

method with omitting discretization [19], Haar wavelet functions [20-24], etc. 

In this work, we focus on the Haar wavelet method based on the orthogonal matrix including the 

integration of orthonormal functions, without using Haar wavelet-based on block pulse functions that differ 

from it, are utilized to reduce the fractional partial differential equation into an easily algebraic matrix 

equation one of Lyapunov or Sylvester type, which can be solved by computer oriented methods, the 

calculations are done by using Math lab software with certain commands or special toolbox. Moreover, it is 
an effective tool in the computational sciences, especially in the subject of signal analysis, data compression, 

and many others, and because its features, such as high energy packing, flexible, the non-stability of 

numerical solutions does not occur in this method, effective for treating singularities, moreover small 

computational cost and it has properties that help speed calculations, after this introduction. Let us begin with 

the definition of the orthonormal set of Haar functions, see [25], which is a family of switched rectangle 

waveform with amplitude differ one to another, it contains just one wavelet during the interest unit 

subinterval of time [0,1), remain zero elsewhere, and orthonormal, the ith uniform Haar wavelet )(thij is 

define as: 
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Where the dilation parameter Jj ,,2,1,0   ,
12  jm , and J is the maximum level of 

resolution, the parameter 1,,2,1  mk   represents the translation of the wavelet, the integers jk ,  

represent the decomposition of the index i  , 12  ki j
, the maximum value of i  is 

122  JMi  , 

there are two functions play aprimary role in wavelet analysis, the function )(00 th , which is called a Haar 

father function and the function )(10 th , which is called a Haar mother function that generates whole other 

daughter and granddaughter functions on unit interval [0,1), there are two basic characteristics occurs in Haar 

functions represent by translation (shifting) and dilation, while the rest of functions can be generated from 

)(10 th using these two operations and knowledge by the following relationship: 

 

),22()( 1

jj

jij kthth  12  ki j
, .0j  (7) 

 

Each Haar wavelet consists of a couple of constant steps with an opposite sign during its subinterval 

and satisfies: 
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This relationship shows that Haar wavelets are orthonormal therefore, it forms an orthonormal basis, 

and in this case, we have an explicit formula for the unique coefficients in the linear combination. With the 
dilation and translation process, one can easily obtain basis functions of two dimensions, as shown in  

Figure 1. 

 

 

Figure 1. The first 1x4 basis for Haar wavelet orthogonal functions with m=8

 

 

 

In this case, the Haar orthonormal matrix for resolution up to 2 levels is given by: 
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4. THE OPERATIONAL MATRICES OF HAAR WAVELET 

In this section, we introduce the operational matrices of the Haar wavelet. The main idea of an 

operational matrix is utilized to reduce the integer (fractional) ordinary (partial) differential equation into an 

algebraic simple matrix equation of Lyapunov (Sylvester) type, which can be solved easily by a computer-

oriented method. 
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4.1.   Function approximation 

Now, similar as one-dimensional function, any two-dimensional function ),( txu  

))1,0[)1,0([2 L which is a piecewise constant or approximately piecewise constant during each subinterval 

and square integrable in the intervals 1<0 x and 1<0 t also can be decomposed into an infinite Haar 

series as see [26]: 
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Where jic ,  is MM 22   coefficient matrix, which can be determined from the inner product: 
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And called the wavelet coefficients. Let 
T

mm xhxhxhxH )](,),(),([)( 110   and
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mm thththtH )](,),(),([)( 110   , here mH is called the Haar wavelet matrix of order m, where 

jm 2 as previously mentioned, and T  denotes the transpose of the matrix, hence the approximated sum of 

m terms of the finite series of (10) can be written in matrix form as: 
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Now, to determine the coefficients jic ,  , we will apply the wavelet collocation method, these shown 

in the following: 
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Write (12) in discrete form by using (13), we obtain the matrix equation: 
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Here 1210  , ,  , , h mhhh





are the discrete forms of the Haar wavelet basis. Since the Haar wavelet 

matrix is orthogonal as mentioned earlier (i.e.
T

mm HH 1
), accordingly the wavelet coefficients can be 

calculated from (14) by: 
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4.2.   Haar wavelet of Integer Order 
To apply the Haar wavelet method for solving any integer order partial differential equations one 

needs the integrals below as presented in [23]: 
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And the matrix form of integration of Haar wavelet is: 
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Similarly, for integration the transpose Haar wavelet: 
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Where the mm  matrix 
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mp  is called the Haar wavelet operational matrix of one-time integration 
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Where 0 is the zero matrix of order 22 mm  . 

 

4.3.   Haar Wavelet of Fractional Order 
Now, like what we have done with the integer order, we will likewise to derive the Haar wavelet 

operational matrix of fractional order integration

mp , 

R . For this purpose, we will recall the 

Riemann-Liouville fractional integral operator )( j using definition (2): 
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For 1,,2,1  mi   
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Let 
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mmD  denote to the Harr wavelet operational mm  matrix fractional differentiation of order
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As well as, Haar wavelet fractional integration of order   with respect to t  and x  respectively 

given by: 
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4.4.   The Methodology of Harr wavelet  

In this section, we apply the Haar wavelet orthonormal matrix method for approximate solutions of 

coupled system of fractional partial differential equations. All computations and plots have been done in the 
help of MATLAB. Consider the coupled system for time dependent fractional partial differential equations 

of orders and   respectively of the kind: 

 

.,           , 10),(),,,,(),(

),,(),,,,(),(

2

1









txfuvuvugtxvD

txfuvuvuftxuD

xxtxt

xxtxt
 (29) 

 

With initial and boundary conditions: 

 

 

),...(),0(),(),0(

),()0,(),()0,(),(),0(),(),0(

ttvttu

xx vxxutt vttu

xx 




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 (30) 

 

Where ),(),(),(),(),,(),,( 21 xxtttxftxf  )(t
 

and )(t  are known continuous 

functions, and 1,0 <tx . Our method can be summarized as the step by step procedure below: 

Step1: Sampling the continuous functions ),( txu and ),( txv into discrete matrices form ][ , jiuU  and 

 
where m2/1  of x and t.

 
Step 2: Transfer the matrices into Haar domain by using Haar wavelet transform. 

][ , jivV 
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).()(),()( tBHxHVtAHxHU TT      (31)  

 

Where ][][ ,, jiji bBaA   ,  are the Haar coefficient matrices and H  is the Haar wavelet matrix. 

Step 3: Write all integer and fractional partial differentiations in Haar wavelet transform.  
Step 4: Calculate the wavelet weighting coefficients A and B after plugging (step 3), with initial and 

boundary conditions (30) in (29): 
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T

m

T

m

T

T

m

T

m

T

m

T








 (32) 

 

This system of matrices in (32) has unknown Haar coefficients A and B. We solve the system 

simultaneously for unknown with the help of using solution of Lyapunov equation type. 

Step 5: Finaly, Haar numerical solutions for ),( txu and ),( txv can be constructed from subistitute values of 

Haar coefficient in (31). 

 

 

5. NUMERICAL TEST PROBLEMS 

This section concerning to the numerical test problems and their visualizations. 

Problem1. Consider the coupled FPDEs [26]: 

 

,0

,0





uvvvD

uvuuD

xt

xt





 .1,0    (33) 

 

Subject to initial conditions. 

 

.cosh)0,(,sinh)0,( xx vxxu    (34) 

 

The exact solution for 1,   is )cosh(),()sinh(),( txtxvtxtxu   ,    , by following 

the method illustrated in Section 5. (Step 1- Step 4), the above system of linear time FPDEs. In (33) and (34) 

Corresponding to (31) and (32), when 75.0  , 8m with substituting initial condition (34) lead to 

the coupled system: 

 

,0)()()()()())(()sinh()()( 1

8

75.

8  tAHxHtBHxHtBHPxHxtHAPxH TTTTT
 

.0)()()()()())(()cosh()()( 175.

8  tAHxHtBHxHtAHPxHxtHBPxH TTT

m

TT
 (35)

 
 

The system of (35) has unknown Haar coefficients A and B. We solve this system simultaneously 

for unknowns. Finely, substitute values of Haar coefficients in (31). Haar solutions of coupled time-(FPDEs.) 

system are attained; see Figure 2. The obtained Haar solutions are compared with exact solutions at values 

)75.0(   and )75.0(  are shown in Table 1 and Table 2. 

 
 

Table 1. Comparsion between exact and numerical haar solution of ),( txu of problem 1 

t
x

 

0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 

Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. 

0.0625 0.0000 0.0312 0.1253 0.1565 0.2526 0.2838 0.3839 0.4151 0.5211 0.5523 0.6665 0.6977 

0.1875 -0.1253 -0.0941 0.0000 0.0312 0.1253 0.1565 0.2526 0.2838 0.3839 0.4151 0.5211 0.5523 

0.3125 -0.2526 -0.2214 -0.1253 -0.0941 0.0000 0.0312 0.1253 0.1565 0.2526 0.2838 0.3839 0.4151 

0.4375 -0.3839 -0.3527 -0.2526 -0.2214 -0.1253 -0.0941 0.0000 0.0312 0.1253 0.1565 0.2526 0.2838 

0.5625 -0.5211 -0.4899 -0.3839 -0.3527 -0.2526 -0.2214 -0.1253 -0.0941 0.0000 0.0312 0.1253 0.1565 

0.6875 -0.6665 -0.6353 -0.5211 -0.4899 -0.3839 -0.3527 -0.2526 -0.2214 -0.1253 -0.0941 0.0000 0.0312 
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Table 2. Comparsion between exact and numerical haar solution of ),( txv of problem 1 

t
x

 

0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 

Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. 

0.0625 1.0000 1.0312 1.0078 1.0390 1.0314 1.0626 1.0711 1.1023 1.1276 1.1588 1.2018 1.2330 

0.1875 1.0078 1.0390 1.0000 1.0312 1.0078 1.0390 1.0314 1.0626 1.0711 1.1023 1.1276 1.1588 

0.3125 1.0314 1.0626 1.0078 1.0390 1.0000 1.0312 1.0078 1.0390 1.0314 1.0626 1.0711 1.1023 

0.4375 1.0711 1.1023 1.0314 1.0626 1.0078 1.0390 1.0000 1.0312 1.0078 1.0390 1.0314 1.0626 

0.5625 1.1276 1.1588 1.0711 1.1023 1.0314 1.0626 1.0078 1.0390 1.0000 1.0312 1.0078 1.0390 

0.6875 1.2018 1.2330 1.1276 1.1588 1.0711 1.1023 1.0314 1.0626 1.0078 1.0390 1.0000 1.0312 

 

 

 
 

Figure 2. Exact and Haar numerical solutions ),( txu  and ),( txv of problem 1 

 

 
Problem 2. Consider the coupled FPDEs. [26]: 

 

.02

,02





uvvD

vuuD

xt

xt





 (36) 

 

Subject to initial conditions: 
 

.cos)0,(,sin)0,( xx vxxu    (37) 
 

The exact solution for 1 

 

is, )cos(),()sin(),( txtxvtxtxu   ,   , By following 

the method illustrated in Section 5. (Step 1- Step 4), the above system of linear time FPDEs. In (36) and (37) 

Corresponding to (31), when 75.0  , 8m with substituting initial condition (51) lead to the 

coupled system: 

 

,0)()(2)())(()sin()()( 1

8

75.

8  tBHxHtAHPxHxtHAPxH TTTT

 

.0)()(2)())(()cos()()( 175.

8  tAHxHtBHPxHxtHBPxH TT

m

TT
 (38) 

 

The system of (38) has unknown Haar coefficients A and B. We solve this system simultaneously 

for unknown. Finely, substitute values of Haar coefficients in (31). Haar solutions of coupled time-(FPDEs.) 

system are attained; see Figure 3. The obtained Haar solutions are compared with exact solutions at values 

)75.0(  and ( 75.0 ) are shown in Table 3 and Table 4. 

 
 

 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Haar wavelet method for solving coupled system of fractional order … (Abbas Fadhil Al Shimmary) 

1453 

Table 3. Comparsion between exact and numerical haar solution of ),( txu of problem 2 

t
x

 

0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 

Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. 

0.0625 0.1247 0.1559 0.2474 0.2786 0.3663 0.3975 0.4794 0.5106 0.5851 0.6163 0.6816 0.7128 

0.1875 0.2474 0.2786 0.3663 0.3975 0.4794 0.5106 0.5851 0.6163 0.6816 0.7128 0.7675 0.7987 

0.3125 0.3663 0.3975 0.4794 0.5106 0.5851 0.6163 0.6816 0.7128 0.7675 0.7987 0.8415 0.8727 

0.4375 0.4794 0.5106 0.5851 0.6163 0.6816 0.7128 0.7675 0.7987 0.8415 0.8727 0.9023 0.9335 

0.5625 0.5851 0.6163 0.6816 0.7128 0.7675 0.7987 0.8415 0.8727 0.9023 0.9335 0.9490 0.9802 

0.6875 0.6816 0.7128 0.7675 0.7987 0.8415 0.8727 0.9023 0.9335 0.9490 0.9802 0.9809 1.0121 

 

 

Table 4. Comparsion between exact and numerical haar solution of ),( txv of problem 2 

t
x

 

0.0625 0.1875 0.3125 0.4375 0.5625 0.6875 

Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. 

0.0625 0.9922 1.0234 0.9689 1.0001 0.9305 0.9617 0.8776 0.9088 0.8110 0.8422 0.7317 0.7629 

0.1875 0.9689 1.0001 0.9305 0.9617 0.8776 0.9088 0.8110 0.8422 0.7317 0.7629 0.6410 0.6722 

0.3125 0.9305 0.9617 0.8776 0.9088 0.8110 0.8422 0.7317 0.7629 0.6410 0.6722 0.5403 0.5715 

0.4375 0.8776 0.9088 0.8110 0.8422 0.7317 0.7629 0.6410 0.6722 0.5403 0.5715 0.4312 0.4624 

0.5625 0.8110 0.8422 0.7317 0.7629 0.6410 0.6722 0.5403 0.5715 0.4312 0.4624 0.3153 0.3465 

0.6875 0.7317 0.7629 0.6410 0.6722 0.5403 0.5715 0.4312 0.4624 0.3153 0.3465 0.1945 0.2257 

 

 

 
 

Figure 3. Exact and Haar numerical solutions ),( txu  and ),( txv of problem 2 
 

 

 

6. CONCLUSION  

In this paper, we applied the Haar operational matrix method of fractional order and integrated with 

discretization in Caputo's sense to time and spatial derivatives. The main aim of the proposed method is 
applied to a system of coupled fractional partial differential equations, this approach is used to transform the 

system into an easily algebraic system of Lyapunov or Sylvester equation type, and the results are compared 

with the exact solution. The approximate numerical solution via the Haar wavelet method is more elegant in 

theory, more convenient in numeric computations, and much faster in the data processing.  
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