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1. INTRODUCTION

The subject of fractional calculus is a branch of applied mathematics which deal with derivatives
and integrals of any arbitrary orders. In this study, we introduce fractional order partial differential equations
(FPDESs) which represent an effective tool to describe several certain real physical phenomena. Most of the
engineering and physical processes are naturally led to (FPDES), such as damping laws, dynamical processes
in fluid, and porous structure [1, 2]. FPDEs appear also in the control theory of dynamical systems, when the
controlled system is delineated, most studies show that, the fractional-order controller can provide better
performance than the controller with an integer order. Also, most coupled systems of FPDESs can be found in
biomechanics, as the modeling phenomena of electrical activity in the heart [3-5]. Furthermore, it appears in
solid-state physics and mechanics, as the coupled system is described by the dynamics of multi-deformable
bodies coupled with standard light fractional order discrete continuum layers [6-9]. And since most of FPDES
do not have exact analytic solutions, so the branch dealing with an approximate numerical solution of this
type of differential equations has attracted the attention of many researchers in recent years. Some of these
methods are; Adomain decomposition method (ADM) [10]. The generalized differentials transform method
(GDTM) [11]. Variation iteration method (VIM) [12]. Wavelet method (WM) [13]. Generalized block pulse
operational matrix method (GBPM) [14]. The homotopy perturbation method (HPM) and Stehfest's
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numerical algorithm for the calculation of inverse (LT) [15], etc. In this study, we focus on the numerical
method of solving a coupled system of the fractional partial differential equation based on the operational
matrices of Haar wavelet orthonormal functions.

The main aim of this study is to obtain fast and effective algorithms that are suitable for digital
computers. The rest of this paper is organized as follows: In Section 2, we recall some necessary definitions
of the fractional calculus theory to make this article self-contained. The Harr wavelet concept has been
presented in Section 3. Section 4 is devoted to the operational matrices of the Haar wavelet, illustrating
examples of the applied method is introduced in Section 5. Finally, conclusion and future studies are
introduced in Section 6.

2. PRELIMINARIES

This section is devoted to some fundamental and necessary definitions of the theory of fractional
calculus, which are required for building up our outcomes [16, 17].
Definition 1:

A real functionu(X,t), X,t € R, t >0 issaid tobe in the spaceC,, , € R, if there exist a real

number P > z¢, such thatu(X,t) =t°u, (x,t) , where U, (X,t) € C(Rx[0,00)) , and it is said to be in space

C’, ifand onlyif%ecﬂ ,ne NU{0}.

Definition 2:
The (left sided) Riemann-Liouville fractional integral operator (j*) of orderr >0, of a function
u(x,t)e C,, u>-1, with respect to t is defined as:

o _Lt _ el
jtu(x,t)—r(a) ! t—7)“u(x,7)dzr, t>0, o
jPu(x,t) =u(x,t).

Definition 3:
The (left sided) fractional derivative operator CD{” of orderc >0, of a function

u(x,t)e C# , 1 =—1, with respect to "t" in the Caputo sense is defined as, see [18]:

a"u(x,7)
! } o dr, 0<ndl<a<n
Tpapln OE : 2
“Du(x,t) = Fn-a)g t-q -+ @
n
a—u(x,t), a=n
ah

Wheren—1<a<n, neN ,n= ’—05—| and ’—a—‘is the greatest positive integer function. The
fractional derivative of order & in the sense of Caputo is also defined as.
‘Dfu(x,t) = j*" D/u(x,t), where D, is the usual differential operator of order r. The relation between
Caputo differential operator and Riemann — Liouville integral operator is given by the expression:

D jiu(x,t) =u(x,t), ©)

L ok u(xO*)t

JDfu(x ) =u(xt) - L a

t>0. 4
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3. HAAR WAVELETS

A wavelet is a mathematical function used in signal processing and image compression, in the first
applied in geophysics to get pictures of layers in subsurface rock, which are used in oil and mineral
exploration. One of the popular families of wavelets is the Haar wavelet, it is the oldest wavelet, it was
introduced by the Hungarian mathematician Alfred Haar in 1909, and the wavelets theory started much in the
1980s. It is a popular topic in diverse fields of engineering and science, the Haar wavelet is also considered
the first known simplest wavelet because it was consisting of a piecewise constant function, that take only the
three values 0,1 and -1. In the last two decades, the subject of wavelets theory has been playing an important
role in many computing mathematical scientists, especially in time-frequency analysis, signal analysis, and
numerical analysis, wavelet technique enables us to decomposed different complicated functions into a
summation of basic functions, as well as each basic function can be generated from dilation and translation of
a mother wavelet function. Consequently, the wavelet analysis of functions is more accurately described and
faster than Fourier analysis. Many studies are focusing on the method of orthogonal polynomial and
functions, to obtain an effective algorithm that can be suitable for adigital computer. Such as anumerical
method with omitting discretization [19], Haar wavelet functions [20-24], etc.

In this work, we focus on the Haar wavelet method based on the orthogonal matrix including the
integration of orthonormal functions, without using Haar wavelet-based on block pulse functions that differ
from it, are utilized to reduce the fractional partial differential equation into an easily algebraic matrix
equation one of Lyapunov or Sylvester type, which can be solved by computer oriented methods, the
calculations are done by using Math lab software with certain commands or special toolbox. Moreover, it is
an effective tool in the computational sciences, especially in the subject of signal analysis, data compression,
and many others, and because its features, such as high energy packing, flexible, the non-stability of
numerical solutions does not occur in this method, effective for treating singularities, moreover small
computational cost and it has properties that help speed calculations, after this introduction. Let us begin with
the definition of the orthonormal set of Haar functions, see [25], which is a family of switched rectangle
waveform with amplitude differ one to another, it contains just one wavelet during the interest unit

subinterval of time [0,1), remain zero elsewhere, and orthonormal, the i"" uniform Haar wavelet hij (t)is

define as:
1 (1 ,0<t<1,
)= —— 5
oo () w/m{o , otherwise. ©)
: k-1 k-05
/2
S T
1 i/2 k-05 k (6)
WO=Ta 2 el o)
0 , otherwize.

Where the dilation parameter J =0,12,...,J ,m= 21 and J is the maximum level of
resolution, the parameter k =1,2,...,m—1 represents the translation of the wavelet, the integers K, j
represent the decomposition of the index i ,i =2% +k —1, the maximum value of i is i =2M =2’
there are two functions play aprimary role in wavelet analysis, the function hoo(t), which is called a Haar

father function and the function hy,(t), which is called a Haar mother function that generates whole other

daughter and granddaughter functions on unit interval [0,1), there are two basic characteristics occurs in Haar
functions represent by translation (shifting) and dilation, while the rest of functions can be generated from

h,, (t) using these two operations and knowledge by the following relationship:
h;(t)=h;(2't—k/2)),i=2"+k-1,j>0. @)

Each Haar wavelet consists of a couple of constant steps with an opposite sign during its subinterval
and satisfies:
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1 i .
277 L i=r,
[h;@®hy et ={ . ©®)
0 0 ,i=r.

This relationship shows that Haar wavelets are orthonormal therefore, it forms an orthonormal basis,
and in this case, we have an explicit formula for the unique coefficients in the linear combination. With the
dilation and translation process, one can easily obtain basis functions of two dimensions, as shown in

Figure 1.

HO0 K00
M 10,400

Figure 1. The first 1x4 basis for Haar wavelet orthogonal functions with m=8

In this case, the Haar orthonormal matrix for resolution up to 2 levels is given by:

(1 1 1 1 1 1 1 1
J8 V8 J8 V8 J8 V8 8 J8
1 1 1 1 -1 -1 -1 -1
) _|V8 V8 V8 V8 VB8 V8 V8 V8
Roo () 101 -1 -1
hyo (1) > 5?70 (6] 0O O
h,o (1) 1 1 -1 -1
P L O S I S
88 7h30(t)7i;100 0 (0] (0] (0]
hs, (1) V2 2
h,, (1) o o = o 0o o 0
L has ) Ve vz oo
0O O ooffo (0]
1 -1
;oo 0O 0 0o o© % 7 ©)
Where

1 1 1 1 1 '
H(-)=|-— —— = 0 — 0 0 0]
°(16) [\/é\/éz V2 }

3 1 1 1 1 !
Ho(2 )= —— = 0 0 0 Of >
T L@\@z V2 }

n

15 1 1 1 -1
H(2)=|-— — 0 = 0 0 0 —=
T [J@Jé 2 ﬁ}

4. THE OPERATIONAL MATRICES OF HAAR WAVELET
In this section, we introduce the operational matrices of the Haar wavelet. The main idea of an

operational matrix is utilized to reduce the integer (fractional) ordinary (partial) differential equation into an
algebraic simple matrix equation of Lyapunov (Sylvester) type, which can be solved easily by a computer-

oriented method.
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4.1. Function approximation
Now, similar as one-dimensional function, any two-dimensional function U(X,t) €
L ([0,1) x[0,1)) which is a piecewise constant or approximately piecewise constant during each subinterval

and square integrable in the intervals 0 < X <land 0 <t <lalso can be decomposed into an infinite Haar
series as see [26]:

u(x,t)=>">"c ;h(xh;t), (10)
i=L j=1
Where ¢; ; is 2M x2M coefficient matrix, which can be determined from the inner product:

i

¢, = (h(x), Culx, 1), hy (),

_ gzij'u(x,t)hi(X)deU(X,t)hj(t)dt- )

And called the wavelet coefficients. Let H_(X)=[h,(x),h(x), - h, ()] and
H,, (t) =[h,(t),h(t),---,h, ,(®)]", here H,is called the Haar wavelet matrix of order m, where

m=2"as previously mentioned, and T denotes the transpose of the matrix, hence the approximated sum of
M terms of the finite series of (10) can be written in matrix form as:

u(x,t) = %%ciyjhi(x)hj(t). (12)

i=0 j=0

Now, to determine the coefficients C; ; , we will apply the wavelet collocation method, these shown

g
in the following:

X, =t,=({—0.5)/2M , £=12,---2M. (13)
Write (12) in discrete form by using (13), we obtain the matrix equation:

U(x,t)=H_(X)CH, (1), (14)

WhereU = [u(X;,t;)].m. C =[C; ;1pm and H is called Haar wavelet matrix of order m, i.e:

_ho,o ho,l ho,z hO,m—l
h1,o h1,1 h1,2 hl,m—l

T
N 1=

h h

L' 'm-1 ] _hm—l,O hm—1,1 hm—l,Z 0 Vm-1m-1 (15)

-y

Here ﬁo ,ﬁl , ﬁz R ﬁm_l are the discrete forms of the Haar wavelet basis. Since the Haar wavelet

matrix is orthogonal as mentioned earlier (i.e. H,;l = H; ), accordingly the wavelet coefficients can be
calculated from (14) by:

C=H, UHS (16)

mxm*

Indonesian J Elec Eng & Comp Sci, Vol. 21, No. 3, March 2021: 1444 - 1454



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 O 1449

4.2. Haar wavelet of Integer Order
To apply the Haar wavelet method for solving any integer order partial differential equations one
needs the integrals below as presented in [23]:

t
jho(r)dr:%t, 0<t<1 (17)
0

Fori =1,2,...,m—1, can be described as below:

ok K k05
21 ' 2 2!
t _
22 1k+1 | k+05 k+1 (18)
!hi(r)drzﬁ o b o St
0 , otherwise .

And the matrix form of integration of Haar wavelet is:

t

[prtH (@) dr=ph Ho@),  n=123,. (19)
0

Similarly, for integration the transpose Haar wavelet:

t

[HI @) dz=HI@®) (pp)"- (20)
0

Where the mxm matrix plm is called the Haar wavelet operational matrix of one-time integration

of matrix Hm(t), Chen and Hsaio in [23], showed that the matrix plm can be calculated from the partition
four submatrices:

.1 ]2m Pnf/z -H,,
P == : (21)
2m| H* 0

m/2
Where 0 is the zero matrix of order m/2xm/2.

4.3. Haar Wavelet of Fractional Order
Now, like what we have done with the integer order, we will likewise to derive the Haar wavelet

operational matrix of fractional order integration p;, o € R™. For this purpose, we will recall the

Riemann-Liouville fractional integral operator ( J“) using definition (2):

J*H, () = paH, () =[pahy (1), prh (), prh (O], (22)
Where,
tO{
Pahy () = \/Er(a+1)’te[ol)’ (23)
0 elsewhere.
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1450 0O ISSN: 2502-4752

Fori=12,..., m-1
0 o<t<K1
2]
k-1, k-1 k-05
2i/2 5] , o <t< T (24)
pr‘;h|(t):\/*7
mC (e +1) k—l ~05,, k-05 K
; 2(t— —)* ——<t<—,
2J 2} 2
o k., Kk
05y HE-2p" . yst<l

Let D, denote to the Harr wavelet operational Mx M matrix fractional differentiation of order
a, since Dy, P =1, then we can calculate Dy, . by inverting p;, .. Moreover, the Haar wavelet

fractional partial derivatives of order ¢ define by:

Ut _ U _ e )C[a"H O _ 11 ceeH, ), (25)
ot” ot*

And

ou(x,t) 0U _ 9"H, (X) -
S =2 5 =S RCH, () = HI (IR T CH, ) (29)

As well as, Haar wavelet fractional integration of order ¢ with respect to t and X respectively
given by:

J7U = jFHL(OCH (1) = Hp (0C)¢ (H, (8) = HoCpiH,,, @7)

JXU = J{ (Hy (OCH, (1) = i (Ha (0)C(H, (1) =Hp (p7) CH, (28)

4.4. The Methodology of Harr wavelet

In this section, we apply the Haar wavelet orthonormal matrix method for approximate solutions of
coupled system of fractional partial differential equations. All computations and plots have been done in the
help of MATLAB. Consider the coupled system for time dependent fractional partial differential equations

of orderscr and [ respectively of the kind:

Dfu(x,t) + f (u,v,u,,v,,u,) = f*(xt),

(29)
D/v(x,t) +g(u,v,u,,v,,u,) = f?(x1), O<a,B<1.
With initial and boundary conditions:
u(0,t) =&(t), v(0,t) =7(t), u(x,0)=39(x), v(x,0) = e(x), 30)

0,(0.8) = A(t), v, (0.t) = (t)...

Where f*(X,t), f 2(x,t), £(t), n(t), $(X), @(X), A(t) and x(t) are known continuous
functions, and 0 < X,t <1. Our method can be summarized as the step by step procedure below:
Stepl: Sampling the continuous functions U(X,t)and V(X,t)into discrete matrices form U =[u, ;]and
V =[v, ;] where A=1/2m of x and .
Step 2: Transfer the matrices into Haar domain by using Haar wavelet transform.

Indonesian J Elec Eng & Comp Sci, Vol. 21, No. 3, March 2021: 1444 - 1454
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U=HT(X)AH(), V=HT(x)BH (). (31)

Where A=[a, ;], B =[b, ;] are the Haar coefficient matrices and H is the Haar wavelet matrix.

Step 3: Write all integer and fractional partial differentiations in Haar wavelet transform.
Step 4: Calculate the wavelet weighting coefficients A and B after plugging (step 3), with initial and
boundary conditions (30) in (29):

HT(X)AP“H (t) +u(x,0) + f{HT (X)[A,B,(P:)" A,BP.,-- JH(t)}= HT (X)F'H (t), (32
HT (x)ARZH (t) +u(x,0) + f{H" (X)[A,B,(P;)" A,BR,,-- JH()}H (X)F*H (t).
This system of matrices in (32) has unknown Haar coefficients A and B. We solve the system
simultaneously for unknown with the help of using solution of Lyapunov equation type.

Step 5: Finaly, Haar numerical solutions for u(X,t)andVv(X,t) can be constructed from subistitute values of
Haar coefficient in (31).

5. NUMERICAL TEST PROBLEMS
This section concerning to the numerical test problems and their visualizations.
Problem1. Consider the coupled FPDEs [26]:

Dfu—u, +v+u=0,
O<a,f<l. (33)
D/v—v, +Vv+u=0,

Subject to initial conditions.
u(x,0) =sinh x, v(x,0) = cosh x. (34)

The exact solution forr, f =1 is u(x,t) =sinh( x—t) ,v(x,t) =cosh(x —t), by following
the method illustrated in Section 5. (Step 1- Step 4), the above system of linear time FPDEs. In (33) and (34)
Corresponding to (31) and (32), when = £ = 0.75, m =8 with substituting initial condition (34) lead to
the coupled system:

T(X) AR H (t) + sinh( x) -
T(X)BP,™H (t) + cosh(x) -

H HT (x)(Pal)T BH (t) + HT (X)BH (t) + HT (X)AH(t) =0,
H HT(X)(P;)T AH(t) + HT(X)BH t)+ HT(X)AH (t)=0. (35)

The system of (35) has unknown Haar coefficients A and B. We solve this system simultaneously
for unknowns. Finely, substitute values of Haar coefficients in (31). Haar solutions of coupled time-(FPDEs.)
system are attained; see Figure 2. The obtained Haar solutions are compared with exact solutions at values

(a =0.75) and (£ = 0.75) are shown in Table 1 and Table 2.

Table 1. Comparsion between exact and numerical haar solution of U(X,t) of problem 1

y 0.0625 0.1875 0.3125 0.4375 0.5625 0.6875

t Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr.
0.0625 0.0000 0.0312 0.1253 0.1565 0.2526 0.2838 0.3839 0.4151 05211  0.5523 0.6665 0.6977
0.1875 -0.1253 -0.0941  0.0000 0.0312 0.1253 0.1565 0.2526 0.2838 0.3839  0.4151 0.5211 0.5523
0.3125 -0.2526 -0.2214 -0.1253 -0.0941  0.0000 0.0312 0.1253 0.1565 0.2526  0.2838 0.3839 04151
0.4375 -0.3839 -0.3527 -0.2526  -0.2214 -0.1253  -0.0941  0.0000 0.0312 0.1253  0.1565 0.2526  0.2838
05625 -0.5211 -04899 -0.3839 -0.3527 -0.2526 -0.2214 -0.1253 -0.0941 0.0000  0.0312 0.1253  0.1565
0.6875 -0.6665 -0.6353 -0.5211 -04899 -0.3839 -0.3527 -0.2526 -0.2214 -0.1253  -0.0941  0.0000 0.0312

Haar wavelet method for solving coupled system of fractional order
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Table 2. Comparsion between exact and numerical haar solution of v(X,t) of problem 1

y 0.0625 0.1875 0.3125 0.4375 0.5625 0.6875

t Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr. Exact Appr.
0.0625 1.0000 1.0312 1.0078 1.0390 1.0314 1.0626 1.0711 1.1023 1.1276 1.1588 1.2018 1.2330
0.1875 1.0078 1.0390 1.0000 1.0312 1.0078 1.0390 1.0314 10626 1.0711 1.1023 1.1276 1.1588
0.3125 1.0314 1.0626 1.0078 1.0390 1.0000 1.0312 1.0078 1.0390 1.0314 1.0626 1.0711 1.1023
0.4375 1.0711 1.1023 1.0314 1.0626 1.0078 1.0390 1.0000 1.0312 1.0078 1.0390 1.0314 1.0626
0.5625 1.1276 1.1588 1.0711 11023 1.0314 1.0626 1.0078 1.0390 1.0000 1.0312 1.0078 1.0390
0.6875 1.2018 1.2330 1.1276 1.1588 1.0711 11023 1.0314 1.0626 1.0078 1.0390 1.0000 1.0312

Exact solution of u(x,t) Approxmate solution of u(x,t)

2 L.

ulxt)

23, ™~

1 4567 - ,.,»-"'_.A
& 123

! %

2587°

Exact solution of v(x.,t) Approxmate solution of v(x,t)
13

vixt)

Figure 2. Exact and Haar numerical solutions U(X,t) and v(X,t) of problem 1

Problem 2. Consider the coupled FPDEs. [26]:

Dfu+u, —2v=0,

(36)
D/v+v, —2u=0.
Subject to initial conditions:
u(x,0) =sin x, v(x,0) =cosx. (37)

The exact solution forax = =1 is,u(x,t) =sin(x+t) ,v(x,t) =cos(x+t), By following
the method illustrated in Section 5. (Step 1- Step 4), the above system of linear time FPDESs. In (36) and (37)
Corresponding to (31), whena =  =0.75,m=8with substituting initial condition (51) lead to the
coupled system:

HT (X)APS'75H (t)+sin(x)+H"' (X)(F’Bl)T AH(t)—2H" (x)BH (t) =0,
HT (x)BP,°H (t) + cos(x) + H (x)(P.)" BH (t) —2H T (x) AH (t) = 0. (38)

The system of (38) has unknown Haar coefficients A and B. We solve this system simultaneously
for unknown. Finely, substitute values of Haar coefficients in (31). Haar solutions of coupled time-(FPDES.)
system are attained; see Figure 3. The obtained Haar solutions are compared with exact solutions at values

(a =0.75)and (B =0.75) are shown in Table 3 and Table 4.
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Table 3. Comparsion between exact and numerical haar solution of u(X,t) of problem 2

0.0625

0.1875

0.3125

0.4375

0.5625

0.6875

%

Exact

Appr.

Exact

Appr.

Exact

Appr.

Exact

Appr.

Exact

Appr.

Exact

Appr.

0.0625
0.1875
0.3125
0.4375
0.5625
0.6875

0.1247
0.2474
0.3663
0.4794
0.5851
0.6816

0.1559
0.2786
0.3975
0.5106
0.6163
0.7128

0.2474
0.3663
0.4794
0.5851
0.6816
0.7675

0.2786
0.3975
0.5106
0.6163
0.7128
0.7987

0.3663
0.4794
0.5851
0.6816
0.7675
0.8415

0.3975
0.5106
0.6163
0.7128
0.7987
0.8727

0.4794
0.5851
0.6816
0.7675
0.8415
0.9023

0.5106
0.6163
0.7128
0.7987
0.8727
0.9335

0.5851
0.6816
0.7675
0.8415
0.9023
0.9490

0.6163
0.7128
0.7987
0.8727
0.9335
0.9802

0.6816
0.7675
0.8415
0.9023
0.9490
0.9809

0.7128
0.7987
0.8727
0.9335
0.9802
1.0121

Table 4. Comparsion between exact and numerical haar solution of v(X,t) of problem 2

0.0625

0.1875

0.3125

0.4375

0.5625

0.6875

Exact

Appr.

Exact

Appr.

Exact
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Figure 3. Exact and Haar numerical solutions u(X,t) and v(X,t) of problem 2

6. CONCLUSION

In this paper, we applied the Haar operational matrix method of fractional order and integrated with
discretization in Caputo's sense to time and spatial derivatives. The main aim of the proposed method is
applied to a system of coupled fractional partial differential equations, this approach is used to transform the
system into an easily algebraic system of Lyapunov or Sylvester equation type, and the results are compared
with the exact solution. The approximate numerical solution via the Haar wavelet method is more elegant in
theory, more convenient in numeric computations, and much faster in the data processing.
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