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1. INTRODUCTION

Wireless power transfer (WPT) system is using the power transmission coil principle to transfer the
electric power from the primary grid source to energize the electric vehicle (EV) [1]. The implementation of
the WPT system to the EV has hugely evolved after the issue related to the depletion of energy resources
especially petroleum started to get global attention besides the fact that petroleum gas emission has contributed
to air pollution [2]. Fortunately, this arising issue is supported by the willingness of car manufacturers to be
involved in this technology. There are different approaches to WPT, such as the capacitive coupling, inductive
coupling, and magnetic-resonance coupling [3]. Capacitive coupling relies on the coupling of two plates that
produce the electric field. The alternating voltage of transmitter plate will create the electrostatic field on the
receiver plate causes by the induced EMF from the oscillating electric field [4]. The capacitive coupling can
be used only for low power applications, such as drone charging or mobile charging, and this approach is
obviously less suitable for charging the EV [5, 6]. However, this approach might be able to be implemented
for EV if a proper design of a compensation network is utilized [7].

Meanwhile, in IPT, the field created from the coupling of the two coils; transmitter (primary) coil and
receiver (secondary) coil, is referred to as the magnetic field. The magnetic field produced results from obeying
the Ampere's Law and Faraday's Law [8]. The source generates an alternating current that creates an oscillating
magnetic field at the transmitter coil. The magnetic field produced is then passed through to the receiver coil
and thus produced the induced alternating current to flow in the load of the circuit, which commonly is the
EV's battery. For the magnetic-resonance coupling, it uses the resonant principle where it allowed the coupling
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between coils to occur in several centimetres gap. The alignment flexibility and power transmission efficiency
(PTE) for this approach are higher compared to the capacitive and inductive coupling [9, 10].

However, only the inductive coupling principle has extensively applied to not only EV but also to
supply power to household appliances, biological implants and other means of transportation such as buses and
shuttle vehicles [11-14]. Currently, most researchers are focusing on the PTE, coil geometry, coupling
coefficient, misalignment tolerant and air-gap between the coupling coil [15-17]. The focus of this paper is to
briefly discuss the basic coil geometry designs of the IPT system for EV, which applied either to the static
charging or dynamic charging. Countless studies are executed on different geometries to guarantee good
coupling even in conditions of misalignments. Since there is no discussion yet related to the basic coil geometry
designs, especially for EV, therefore, this brief overview will investigate several commonly used geometry
designs for EV application that usually concern about the cost. With that, no discussions on other coil
geometries such as E-type, U-type, W-type, I-type and S-type will be discussed here as these
geometries dominate the use of ferrite, which lead to higher cost. The evaluation of coil geometries here is
mainly on the circular spiral coil (CSC), square coil (SC), rectangular coil (RC) and double-D coil (DDC). The
key parameters affecting the overall system, together with the advantages and limitations, are also discussed in
this paper.

2. STATIC AND DYNAMIC CHARGING

EV technology is well-known in the vehicle industry since the early 1900s [18]. This technology has
recently become one of the ultimate solutions on utilizing the electric power source, which is known to be
environmentally friendly compared to the conventional internal combustion engine. The emergence of this
technology arises from the existence of the plug-in static charging. The existing plug-in conductive charging
requires physical contact between the electric power source and the vehicle battery. This method has become
less compatible as it causes inconvenience and requires cable to supply the electric power to the EV. To be
widely accepted by the public, researchers and car manufacturers have put tremendous effort into producing a
convenient and safe method to charge the EV. Therefore, the static wireless charging (SWC) introduces the
charging process without any presence of cables. It offers compactness and safety due to charging capability
without any use of a cable. Additionally, the efficiency could reach up to 91% over 25.4-centimeter air-gap
[8]. Figure 1 illustrates the typical structure of the static wireless charging (SWC) of the WPT system. As the
years pass, researchers started investigating the dynamic wireless charging (DWC). This idea is due to the time
taken to fully charge an EV which approximately took 4 hours with the 3.7 kW of EV charging rate when using
the SWC technique [19]. The DWC technique proposed to enable the EV charging process to occur while the
vehicle is in motion without the need to stop and park at the designated charging station. However, the SWC
is still reliable at places such as office areas or residential areas where the vehicle is parked for some quite
amount of time before starting the engine again. The basic idea of wireless charging for the EV while the
vehicle is parked is illustrates in Figure 1.
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Figure 1. Basic wireless charging structure [20]

Figure 1 shows the primary AC voltage converted through an AC-AC power converter with an
operating frequency of 85 kHz. The operating frequency range starts from 10 kHz to 100 kHz for the WPT
system to be working. Despite this, the operating frequency, as stated in SAE J2954, is limited to 85+3.7 kHz
for EV [21]. The AC voltage is then transmitted to the transmitter coil after passes through the primary
compensation in which the transmitter circuit system embedded in the ground with the primary compensation

Indonesian J Elec Eng & Comp Sci, Vol. 20, No. 3, December 2020 : 1703 - 1716



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 d 1705

network. The receiver coil then receives the energy that is transmitted by the transmitter coil on the receiver
side. The power received is then pass through the secondary compensation before it is being converted to DC
voltage to be used to recharge the EV battery. The transmitter and receiver coils made up of several coil
geometry designs depend on the magnetic field distribution desired for the system's application. Now, imagine
the same concept as before being implemented, but the difference is that the car is in motion. This concept
refers to DWC. DWC will happen when the receiver coil attached underneath the EV charges through the
magnetic field between several transmitter coils (commonly embedded in the ground). DWC has a design that
could reduce the range anxiety and time-consume to charge due to the range limitation that arises from the
SWC of EV. However, when considering the DWC, the misalignment between the transmitter and receiver
coils is a major concern. An increase in misalignment could reduce the coupling coefficient and thus reducing
the mutual inductance and PTE of the system.
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Figure 2. Schematic of multiple transmitter coils and single receiver coil in DWC system [22]

The misalignment may highly occur because of the movement of the receiver coil from one transmitter
coil to another transmitter coil along the track, as shown in Figure 2. The main idea of this technique is simple
where multiple primary coils called transmitter coils embedded in the ground requires to transmit the electric
power from the grid to the secondary coil called receiver coil mounted at the bottom of the vehicle. There is
no physical or mechanical contact between the two coils and the distance between the transmitter and receiver
coils is referred to as ground clearance or typically, air-gap. As the receiver coil passes one of the multiple
transmitter coils, the transmission of power has expected to occur from one transmitter coil to the next
transmitter coil. The transmitter coils are placed along the road as it needs to be able to transfer power wirelessly
in-motion [8, 23]. In simple words, the transmitter and receiver coils will be switched on and off dynamically
depending on the EV position.

3. PARAMETERS AFFECTING THE IPT SYSTEM PERFORMANCE

Typically, the IPT system consists of not only the suitable coil geometry to create the electromagnetic
induction but also consists of suitable compensation topology (CT). Different CTs choices can apply to
different areas of application. The electromagnetic induction created by the coupler does not imply that all flux
from the transmitter coil gets linked to the receiver coil [8] the losses of the flux result in a phenomenon called
flux leakage. However, the unwanted event could be avoided with the use of a CT that applied the capacitors
to compensate for the IPT circuit system. Also, the minimization of power supply VA rating will be possible;
thus, it leads to maximum PTE. There are four basic CTs which either made up of series-series (SS), series-
parallel (SP), parallel-parallel (PP), or parallel-series (PS) capacitors arrangements [24-26]. Not limited to that,
the hybrid CTs have also been reported including LCC-LCC, LCL-LCL, LCC-P, LCL-P, S-CLC, LCL-S,
CCL-S and multi-LCC capacitors and inductors arrangements [27]. The CT is chosen based on the suitability
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of the designed system and its application. Based on several studies, the most popular CTs are the SS and LCC-
LCC topologies due to their suitability and flexibility to optimize the high frequency to obtain the desired PTE.
Besides the fact that their transmitter capacitances being independent towards the load which make both CTs
best suited for not only SWC but also DWC, where the relative position of transmitter coil is changing
concerning the receiver coil's position [24, 26, 28, 29].

Figure 3(a) demonstrates the SS topology. This topology is suitable in fulfilling different utilities'
preferences of the IPT system. The SS topology is chosen not only in static charging but also in dynamic
charging [27]. Previous research has proven that this CT is suitable for the long-track application [3, 25, 30].
Meanwhile, Figure 3(b) shows the LCC-LCC topology. This topology can achieve zero current switching,
which means that the reduction of current stress in the inverter is possible by tuning this CT. Previous research
has proven that this CT has a high tolerance to misalignment and independent of load [28, 31]. Other CTs are
not discussed in detail in this paper.
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Figure 3. (a) Basic series-series and (b) Hybrid LCC-LCC compensation topologies

The topologies, as mentioned earlier, mainly comprise of both transmitter and receiver circuits. R1
and R2 represent the resistance of the transmitter and receiver coils, respectively. C1, C3 and C2, C4 are the
compensation capacitors of the transmitter and receiver coils, respectively. Compensation capacitors
compensate the inductances of the IPT system so that the system can operate at the designated operating
frequency. RL refers to the load, which in this case is the EV battery pack that acts as the EV charging system,
and it directly connects to the receiver coil [32]. RL, which is the simplified resistor, may also be representing
the driving system or rectifier [8]. The overall circuit works by transferring power from the transmitter coil to
the receiver coil in which produces the magnetic field when the two coils (L1 and L2) respectively are coupled
together. The higher the coupling coefficient, the higher the mutual inductance (M) thus increasing the power
transmission. These are the key factors that determine the efficiency of the overall IPT system. Equation (1) is
the formula to determine M and the relationship between power and mutual inductance, M is determined by
equation (2) [33]:

M=kV(L_1 L 2) @)
P=M"2/L 2 ol 1Q (2)

where Kk is the coupling coefficient, meanwhile, L1 and L2 are the self-inductances of the transmitter and
receiver coils, respectively. One of the essential parameters that need to be taken into account when dealing
with the coupling coefficient is coil geometry as it is able to affect the coupling coefficient [22]. The mutual
inductance, M will determine the amount of flux that will be passing through the receiver coil. Thus, the
changes in coupling coefficient, k will affect the mutual inductance, M and output power, P. 11 is the transmitter
circuit current, Q is the quality factor of the receiver circuit, and o is the operating frequency. The previous
mentioned equations are generally for IPT system utilizing any CT for the system. For the IPT system to
function very well, the power factor is desired to be unity. Therefore, Table 1 gives the efficiency of IPT system
when using the SS [25, 26] and LCC-LCC [34, 35] topologies as follows.

Figure 4 illustrates the WPT equivalent circuit, which contains a converter at both the transmitter and
receiver sides. The transmitter converter acts as the high-frequency current generator. Meanwhile, the receiver
power converter acts as the rectifier to rectify the system once the power is delivered from the transmitter to
the receiver coil [36]. A power converter is vital in boosting the efficiency of the system. The blue dotted line
box in Figure 4 is the SS topology. The same equivalent circuit can use any other topologies that best suited to
the application's goal.
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Table 1. SS and LCC-LCC topologies efficiency

Topology Efficiency
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where Lf1 and Lf2 are the compensated inductance for transmitter and receiver coils, respectively, meanwhile,
U1 and U2 are the AC voltage for inverter and rectifier.
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Figure 4. Equivalent circuit of the WPT system

This type of CT is able to minimize the voltage at the transmitter coil and concurrently, provide the
load with constant voltage [37]. If the system utilizes the SS topology, the input voltage and efficiency are high
at the maximum mutual inductance [27]. In contrast, if the system utilizes LCC-LCC topology, higher
misalignment tolerance is expected at the minimum mutual inductance [31]. The total magnetic field or also
known as the total flux that is produced by the transmitter coil is either entirely coupled or partially coupled to
the receiver coil. The terms for this occurrence are tightly coupled coils if all flux is distributed and loosely
coupled coils if the flux is partially distributed. Typically, the tightly coupled coils produced much larger
mutual inductance, M than the leakage inductance. In [38], the coupling coefficient is approximately 92% to
98% for the tightly coupled coils such as induction motors and transformers. On the other hand, the loosely
coupled coils may produce high leakage magnetic field if the coils are poorly coupled and commonly, the
windings of the couplers are in the planar spiral form [39, 40].

4. RELATED WORKS

In the IPT system, various coil structures have existed due to the ongoing research for the best coupler
geometry design with better efficiency of the overall system. Different coil geometries give different magnetic
field distribution [41]. The diversity of coil geometries contributes to the founding of many types of couplers.
Among the coupler designs are the CSC [40, 42-45], SC [36, 39, 46], RC [47-49] and DDC coils [17, 23, 50].
Over the years, some innovative coupler geometry designs have been proposed, for instance, bipolar coil (BC)
[51, 52] and double-D quadrature coil (DDQC) [28]. Not limited to that, the mutual inductance, self-inductance,
coupling coefficient, and misalignment variation are among the key factors that are affected by the coil
geometry designs. The coil geometry designs further affect the PTE of the IPT system. With the aim of
achieving better PTE, the authors of [42] put forward the idea of cancellation coil implementation with the
main coil at both transmitter and receiver coils to minimize the electromagnetic field (EMF) outside the
charging region.

R. A. Deshmukh and D. B. Talange [15] proposed the IPT system that is capable of transferring 1 kW
power over 10 cm air-gap at 15 kHz frequency with 95% efficiency. R. Vaka and R. Kumar [16] suggested an
extended idea of asymmetrical CSC as the geometry design of the coupler coils. This design exhibits a better
coupling coefficient and misalignment tolerance while having equal outer diameter but adjusted inner diameter
with 120 mm air-gap for each case. On the other hand, G. Ke et al. [23] discussed the null coupling position
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for CSC to analyze the magnetic properties of the system. These researchers found out that the null coupling
occurs when the lateral offset is approximately 50% of the outer diameter for the CSC. However, in recent
findings by T. Fujita, H. Kishi, H. Uno et al. [53], the implementation of the solenoid coils rather than the CSC
is addressed to improve the misalignment. Even though that is the case, CSC is still preferred because of its
geometry that offers simpler geometry with perfect symmetry while able to control the coupling coefficient by
controlling the physical sizes of the coupler geometries [40].

Other than CSC geometry, the SC and RC geometries are also common in the WPT system owing to
the characteristics of their magnetic field that is single-sided [8]. The single-sided characteristics help with
leakage flux reduction as its flux pattern, as shown in Figure 5(c), distribute most of the flux under the coils
and away from the floor pan [54]. Consequently, it avoids the leakage flux from coupled into the vehicle, which
may lead to undesirable efficiency loss [38]. In addition, the authors of [47, 48] agreed that RC geometry
exhibits excellent tolerance to misalignment, as shown in Figure 8(b) and therefore, suitable for high power
transmission. The SC and RC geometries notably possess quite similar characteristics as they have almost the
same geometries. However, RC geometry is preferred as it offers greater magnetic field area even if they both
operate using the same material and coil turns thus, offering much bigger charging region [22, 55].

Innovatively, in [29, 56], the authors recommended integrating the compensated coils with the main
coils at both transmitter and receiver coils to enhance the PTE of the IPT system. The compensated coils are
tested to be either unipolar or bipolar coils. Note that the bipolar coils mentioned in these references carry the
meaning of polarized coils and not bipolar geometry design. The transmitter and receiver coils are desired to
have high self-inductance and therefore, leads towards achieving high coupling coefficient, high mutual
inductance and high misalignment tolerance when they are coupled [57, 58]. The misalignment that occurs
during the coil coupling reduces the PTE. Therefore, an effort offering a perfect alignment to improve the PTE
using giant magnetoresistance (GMR) sensors were built in a study [59]. The authors designed the system to
resolve the misalignment when the designated algorithm detects the suitable direction and magnitude that an
EV required for coupling in alignment based on the results showed by the GMR sensors.

For EV application, the IPT system might encounter impedance matching problem with high-
frequency circuits and achieving high PTE seems to be complicated. Therefore, to achieve greater PTE, the
authors of [60] presented the impedance matching network (IMN) to optimize the transmitter coil track. H.
Dashora, G. Buja, M. Bertoluzzo et al. [61] have summarized the characteristics of compatible coil geometries
that should be light, thin, and compact to avoid unnecessary additional weight to the EV. The charging system
should have a satisfactory coupling coefficient to operate without any physical contact and also able to tolerate
an acceptable misalignment with air-gap variation at least 150 to 200 mm, especially when dynamically
charging the EV [11, 53, 60, 62, 63]. In DWC application, DDC is commonly preferred for segmented rails
rather than CSC due to its ability to deliver stronger coupling coefficient and greater offset tolerance [50]. Even
if the CSC and DDC having similar materials and output power, DDC contributed a five times larger charging
region compared to CSC [64]. A. A. S. Mohamed et al. [32] proposed the idea to enhance the DDC using the
improved Tabu search algorithm. The flux distribution of the coils is simulated to further analyze the PTE
wirelessly by DDC geometry. G. Ke et al. [23] discussed the null coupling position for DDC and found out
that the null coupling occurs when the lateral offset is approximately 33.3% of the length of secondary coil for
DDC. Yet, its geometry still experiences a dramatic drop when EV is moving from one transmitter to the next
transmitter coil. This drop leads to failure in achieving good PTE as the mutual inductance is not stable and
insufficiently strong.

Therefore, a crossed DDC geometry was investigated with its double-coil strategy [17]. The
suggestion to design a well-functioning transmitter coil that should achieve low electric and magnetic values
by attaining high efficiency and high output power is elaborated more in paper [17] where it results in the
extended version of the rectangular coil. The mutual inductance profoundly influences the efficiency and output
power of a WPT system. The mutual inductance should also be designed very well to be large and sufficient
enough to attain the reasonable output power [15-17, 23, 32, 53]. Usually, the coil geometry of the inductive
magnetic coupler for DWC is the extended rail architecture. However, this extended rail architecture has
suffered from low efficiency and substantial electromagnetic interference. Fortunately, Oak Laboratory in the
USA has developed a dynamic charging system using the array of the coil. This architecture successfully
achieved lower electromagnetic compatibility and also reduced the values of the electric and magnetic field,
and this makes the coil array more attractive and compatible to be implemented [11]. Besides, [62] has recently
suggested the double-transmitting coil scheme to improve power fluctuation caused by the relative position
changes effect in DWC.

4.1. Circular spiral coil
In the initial stage of WPT evolution, the circular spiral coil (CSC) was proposed for several years
[39, 40, 43]. The typical CSC is as demonstrated in Figure 5(a). The magnetic flux of this coil geometry

Indonesian J Elec Eng & Comp Sci, Vol. 20, No. 3, December 2020 : 1703 - 1716



Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 d 1709

distributes in a cylindrical symmetry [39]. Therefore, due to its spiral geometry, this coil offers a high
misalignment tolerance in all directions.
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Figure 5. CSC (a) typical geometry, (b) with ferrite spokes [55] and (c) flux lines from front view

R. Deshmukh and D. Talange [15] discussed the procedures in designing a 1 kW power for the IPT
system. The authors analyzed the magnetic parameters of the DWC inductive coupling coils which implement
the circular spiral coil geometry at both sides, transmitter and receiver coils. The CSC is then introduced with
the use of ferrite shown in Figure 5(b). The addition of ferrite at the back of the coil pad is to promote the flux
path and together with that it may help in reducing the flux leakage. The IPT system needs suitable, and high
frequency with proper compensation to achieve a reasonably high efficiency contributes to better system
performance. The IPT system will give maximum output power when the operating frequency is similar or
close to the resonant frequency. Hence, the capacitance and inductance at both transmitter and receiver coils
need to be designed to match the system's resonant frequency [65].

However, the increase in operating frequency might result in a highly inductive circuit. Thus, it
increases the impedance of the overall circuit [16]. This increment will result in reduced power factor as it
approaches zero when the operating frequency grows. Therefore, since the load and WPT coil inductances are
the factors affecting the power transfer, this will cause the transmitter coil to have a high VA rating and thus,
reducing the efficiency of the overall system. However, R. Deshmukh and D. Talange [15] found that capacitive
compensation in both transmitter and receiver coils is much recommended to magnify the operating frequency
while improving the power factor by employing the CSC geometry. The CSC is well-known because of its
excellent magnetic properties and electrical properties which results in its simplicity to experiment on [63]. It
is the most utilized geometry for WPT, as mentioned in [15, 16, 23] where the outer and inner diameter is
decided from the current density of the material used.

4.2. Square and rectangular coils

Figure 6(a) demonstrates the typical geometry of the square coil (SC). The typical geometry of the
rectangular coil (RC) is shown in Figure 6(b), and Figure 6(c) illustrates the RC with ferrite bars. For the SC
with ferrite bars, the illustration is quite the same with the RC with ferrite bars, as shown in Figure 6(c). For
the SC, the calculation for the magnetic field is quite different from the CSC in which, the magnetic field
calculation for this coil geometry can be quite tricky since it involves four similar sides that are equal.
Therefore, most commonly, the CSC is preferred because of more straightforward calculations.

In [46], the researchers have tried analyzing multi-single SC that enables the EV battery to charge
from one SC to another SC which is along the track either with ferrite or directly air as their core. As expected,
the power efficiency of the system increases when the coupled coils are made up of ferrite-cored rather than
air-cored. However, SC is tested to has a sensitive misalignment tolerance when compared to the hexagonal
coil geometry [36]. The SC is less preferred compared to the CSC and RC as most researchers only focus on
the two other coil designs to be implemented in the WPT system. Practically speaking, the reason behind this
is maybe due to the close similarity between the square and rectangular geometry features. Both coil geometries
are supposed to have the same method of calculation because of their close resemblance in the form itself.
However, since RC geometry has a more substantial area even if using the same length of wire that SC used,
the power efficiency of the RC is found to be better. Based on a study conducted in [67], they found out that
the bigger the coil size, the better the performance of power efficiency.

The RC geometry is suitable in the dynamic charging due to its high tolerance on misalignment [23]
while capable of transferring power effectively and its cost-effectiveness [22, 47]. In the same case, as
mentioned in the CSC section, the ferrite bar has been used and attached to the rectangular coil to optimize
power efficiency. Some researchers had tested the IPT technique for a variety of misalignment that is possible
on the rectangular coil to improve the coupling coefficient and mutual inductance between the two coupled
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coils [47]. In a study, it shows that the longer the ferrite bars, the higher power transfer compared to the shorter
bar [66]. Therefore, power transfer is proven to increase with the addition of longer ferrite bars. Bilandzija et
al. in their study, have proposed to analyze the uniformity of the magnetic field intensity that is produced by
the RC geometry [48]. They later found the optimal distance or misalignment that their proposed RC can
achieve. They used both the transversal and longitudinal sheets to represents the magnetic field intensity
produced. However, due to the geometry of the RC, some areas have low magnetic field intensity as expected.

(@) (b) (©

Figure 6. Geometry of the (a) typical SC, (b) typical RC and (c) RC with ferrite bars [66]

4.3. Double-D Coil

Figure 7(a) demonstrates the typical geometry of coreless double-D coil (DDC) and Figure 7(b)
illustrates the DDC with ferrite bars. When discussing DDC, the geometry itself commonly made up of ferrite
cores as the coils are placed at the top of ferrite, and this characteristic is referred to as polarized coil [61]. The
origin existence of DDC is the results of the combination of flux pipe and CSC geometries advantages [54].
For more straightforward understanding, the DDC geometry is close to two equal rectangular geometry as in
Figure 7(a) that connects magnetically in series with opposite current direction in each D coil [50].
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Figure 7. DDC (a) typical coreless geometry, (b) with ferrite bars and (c) flux line distribution

In addition, the coupling coefficient of this geometry declines smoothly compared to SC as it
approaches zero with the displacement increment, as shown in Figure 8(a). Therefore, permitting a high PTE
of the overall system, especially in DWC [11]. The selection of coil geometries differs for each application,
and different researchers have to make efforts to optimize their coil geometry selection to achieve their
conflicting goals. Therefore, the authors of [68] compared several coil geometry with similar power density to
ensure a fair comparison of their coupling coefficient (k) under different misalignment and air-gap as illustrated
in Figure 8(b) and Figure 8(c). The higher the coupling coefficient over the displacement, misalignment or air-
gap, the higher the efficiency that particular geometry can offer.
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Figure 8: Coupling Coefficient (a) vs. Displacement [61], (b) vs. Misalignment [68] and (c) vs. Air-Gap [68]

5. DISCUSSION

The basic coil designs discussed have their benefits to the IPT system. After all, these basic coil
designs are easy to operate because of its geometry. Not limited to that, these basic coil designs are the ones
that triggered the development of other coil geometry designs that the WPT system has up until recently. When
the coupled coils are in perfect alignment, the overall maximum power efficiency is expected. However, the
all-time concerns when speaking of coupled coils are, of course, the misalignment tolerance and power
efficiency. Both of these concerns are affected by the coupling coefficient and mutual inductance of the overall
WPT system. Most commonly, adding ferrite bars or ferrite in any shape has managed to facilitate the PTE to
be much better when compared to the air-cored or coreless coupled coil. Transmission of power by
electromagnetic induction between the transmitter and receiver coils is possible when several aspects are given
attention to design such a wireless technology.

The aspects that require observation in designing the coils for the WPT system are such as:

— Geometry design of the coil including the coil number of turns, layer number of turns and spacing between
the turns or commonly referred to as pitch

— Type of wire used either the copper wire or Litz wire of any AWG that best suited the application's goal

— Obey the bifurcation-free criteria by using the suitable Litz wire and proper operating frequency that is the
best if it is closer to the resonant frequency

Commonly, copper is selected as the material for designing the coil because of its better conductivity
and lower price despite other materials. Also, less voltage is required to produce a sufficient magnetic field if
copper is used. Thus, the heat of the coil could also reduce significantly. However, with the use of solid
conductor, induced eddy current undesirable effects such as skin effect and proximity effect are dominant and
therefore, affecting the WPT efficiency. Feeding the coils with high-frequency voltage will result in a high-
frequency current flows through the coil. Due to this so-called time-varying current, the time-varying magnetic
field is produced and results in induced eddy current.

Consequently, to reduce the losses caused by eddy current, a bunch of stranded wires at a high
frequency such as Litz wire is recommended to be used [18]. Litz wire is made of several thin strands that are
insulated, and it is the best suitable option to improve the WPT efficiency with its less resistance value.
However, another aspect which is bifurcation is considered worrisome if it happens during the designing
process. Bifurcation isan occurrence of more than one zero phase angle frequency in a circuit. The WPT system
is supposed to operate at the resonance frequency, which means the value should be zero if the power
efficiency is to be improved. Therefore, to improve the PTE, R. A. Deshmukh and D. B. Talange [15] has
concluded that it also depends on the quality factor, Q and coupling coefficient, k. These factors are determined
by not only coil geometry, core material and coupler distance, but also, the self-inductance of the coils must be
high with low series resistance to attain high Q and k [8]. Table 2 summarizes the advantages and limitations
of related works.
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Table 2. Summary table of related works

Ref. Authors Description Coil Dimensions Advantages Limitations
Proposed the utilization of an Tran_smltter_ and cancellation coil e S_uggested cancellatlo_n * No comparison is
- h - . inner diameter and outer coil is good enough asit  made in terms of
. inductive cancellation coil . X ; L
A. Tejeda et . - diameter, respectively: was able to transfer overall efficiency
[42] al. (2016) that_ Conn.eCtEd In series- 357.2 mm and 500 mm more power with less and power losses
. opposing with the transmitter . stray leakage and low with a similar
(T)z'tzi) dzot':];cz:ﬁ;crluf: tl:ee IiEO'\:F Transmitter (cancellation) coil ~ impact on the coupling geometry consists of
ging reg number of turns: 9 (3) factors ferrite
Inspected the comparison of Square coil sr'ﬁrf]s length: 212 o The intended coil .;gfesgeunzriiiggltlc;s
[36] E. Aydinetal.  the square coil and hexagonal geometry has a misalignment
(2018) coil for igferrw;:sgélgnment Hexagonal coil sides length: 132 trzar;slTvl;sflgpcac;\:veizof compared to
mm ’ ging hexagonal coil
. o o Lessen the power -
Suggested the crossed DD 1&)rgr:}sq;nqlt;e2|'5%o:1.m fluctuation with the ¢ t:wngengtt:ctilzgi?f
[17] L. Xiang etal.  coil structure and put forward efficiency variation from structu?gis only for
(2018) the idea of using the double- Recei " 89.2% t0 88.7% N  only o
coil excitation method eceiver coil: regardless of Ey e transmitter coi
500 mm x 400 mm o
positions
. . . Transmitter coil:
Integration of bipolar coils as e Good performance on .
T Kanetal the compensated coils into the 600 mm x 450 mm x 4 mm front-to-rear ¢ Th(ian(i(r)cl)ldzt;:gtures
[29] ' ( ' unipolar coils as the main . . misalignment and air- L .
2018) : : : Receiver coil: : o additional weight to
transmitter and receiver coil 400 mm x 300 mm x 4 mm gap with 95_.49 % dc-dc EV
structures efficiency
Transmitter and receiver coils:
Investigated the coupling 152 mm x 132 mm o The related parameters e The analysis is
[47] S.Rao et al. coefficient, mutual inductance are tested with various done for one
(2019) and flux distribution of Transmitter and receiver coils  misalignment for airand  dimension of the
g
rectangular coil number of turns: ferrite cored rectangular coil
20 turns
Anticipated the combination o Better magnetic o The performance
M. S. Alam of the circular and double-D coupling was shown by metricspare only for
[45] Chowdhury (DD) coils structure where Coil dimensions as the combination of the the's ecificati)(;ns
and X. Liang the two different geometry recommended in SAE J2954 proposed coil when s e?sted by SAE
(2019) coils are electrically compared with the 99 J2954y
connected in parallel conventional coils
. o o A constant reflected
Presented a WPT system that Transmitter coil: load resistance together -
- s 10000 mm x 150 mm - . e The systemis
[60] L. Tan et al. opFlmlzes th_e tr_ansmlttlng with Fhe_ maximum tested for 2 mm air-
(2020) coil track with impedance . - speed limit is achieved
. Receiver coil: - gap only
matching network (IMN) from transmitter length
150 mm x 150 mm .
selection and IMN
Transmitter coil: e Suggested WPT
Suggested double- .
o SUms  vwentmgcolwwneo  TOTTXIOMM s s Thessane
(2020) improve the relative position . - . pol .
changes effect Receiver coil: fluctuation experienced air-gap only
360 mm x 360 mm in DWC
6. CONCLUSION

A brief review of the basic coil designs for the WPT system is carried out. The basic coil designs to
implement the power transmission wirelessly are investigated and discussed together with the key factors
affecting the design considerations. It has been shown that different coil geometry designs have their
contribution to the IPT charging system. The key parameters influence the overall system regardless of their
coil geometries has also been evaluated. Also, the evaluation of the comparative analysis of different
geometries efficiency is done. Thus, it is hoped that this brief review manages to offer an understanding of the
basic coil geometries discussed as the conventional designs of the WPT system.
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