
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 21, No. 3, March 2021, pp. 1739~1750

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v21.i3.pp1739-1750 1739

Journal homepage: http://ijeecs.iaescore.com

Enhancement in data security and integrity using minhash

technique

Sa’ed Abed, Lamis Waleed, Ghadeer Aldamkhi, Khaled Hadi
Department of Computer Engineering, Kuwait University, Safat 13060, Kuwait

Article Info ABSTRACT

Article history:

Received May 16, 2020

Revised Nov10, 2020

Accepted Dec 11, 2020

 Data encryption process and key generation techniques protect sensitive data
against any various attacks. This paper focuses on generating secured cipher
keys to raise the level of security and the speed of the data integrity checking

by using the MinHash function. The methodology is based on applying the
cryptographic algorithms rivest-shamir-adleman (RSA) and advanced
encryption standard (AES) to generate the cipher keys. These keys are used
in the encryption/decryption process by utilizing the Pearson Hash and the
MinHash techniques. The data is divided into shingles that are used in the
Hash function to generate integers and in the MinHash function to generate
the public and the private keys. MinHash technique is used to check the data
integrity by comparing the sender’s and the receiver’s encrypted digest. The
experimental results show that the RSA and AES algorithms based on the

MinHash function have less encryption time compared to the normal hash
functions by 17.35% and 43.93%, respectively. The data integrity between
two large sets is improved by 100% against the original algorithm in terms of
completion time, and 77% for small/medium data and 100% for large set data
in terms of memory utilization.

Keywords:

Advanced Encryption Standard

Cryptography

Data integrity
k-shingle technique

MinHash

Rivest-Shamir-Adleman

This is an open access article under the CC BY-SA license.

Corresponding Author:

Sa’ed Abed

Department of Computer Engineering

Kuwait University, Safat 13060, Kuwait

Email: s.abed@ku.edu.kw

1. INTRODUCTION

Ciphers are used for performing encryption and decryption operations in various devices to ensure

that any exchanged data and information between connected devices are well secured. There are two types of

cipher algorithms: asymmetric and symmetric [1]. Asymmetric cipher algorithms use two keys (public and

private keys) whereas symmetric algorithms use only one key which is a shared private key. Typically,

asymmetric ciphers are more complex and secure than symmetric ones [2, 3]. Rivest-shamir-adleman (RSA)

and elliptic-curve-cryptography (ECC) are examples of asymmetric ciphers [4] while data encryption

standard (DES) and advanced encryption standard (AES) are common examples of symmetric ciphers [5].
Symmetric ciphers are used in resource-constrained devices (RCDs) because they provide privacy for the

devices in addition to their high performance.

Cybersecurity is the practice of protecting networks and systems from digital attacks. These attacks

can be either accessing, changing, or destroying the stored information. Using encryption algorithms, which

are based on performing some mathematical processes to procedures to encrypt or hide data, a ciphertext is

created, and a secured key is generated in order to get the original data. This brings the concept of

Cryptography, which is the process of converting the plaintext, where the data needs to be transformed into

an encrypted text and vice-versa. It constructs and analyses protocols to prevent any third parties, known as

https://creativecommons.org/licenses/by-sa/4.0/
mailto:s.abed@ku.edu.kw

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 21, No. 3, March 2021 : 1739 - 1750

1740

adversaries, to interfere with the plaintext by eavesdropping. Cryptography [6] stores and transmits the data

in a secured communication to allow the intended users only to read and process it. Cryptography is used in

many daily applications that require a high level of security such as computer passwords, different types of

transactions whether it is a banking transaction or e-commerce [7]. The process of hiding the information is

called encryption, and when the information is unhidden for the end-user, it is called decryption. This process

is accomplished by using specific algorithms called cryptographic algorithms. The plain text will be the input

for these algorithms to encrypt and decrypt using another key input used to generate the ciphertext, which is

the plain text after encrypting. The ciphertext is decrypted also by using a key at the receiver side.
The only difference in the three types of the cryptographic algorithms symmetric, asymmetric, and

the hash function is the number of cipher keys that are used in the encryption/decryption process. This paper

will consider the asymmetric algorithms only to generate the ciphertext and to decipher it. These algorithms

need to satisfy some security goals like confidentiality, data integrity [8], authentication, and nonrepudiation

to protect the data in a large organization.

The main issue that any organization might face is finding the best way to protect sensitive data and

to ensure that no threats such as unauthorized access and use, misappropriation, destruction, and alteration

happen within the organization. There are many efficient techniques to maintain the data in the transmission

process and to ensure that the receiver receives it correctly. However, these techniques suffer from the delay

due to the many stages that it goes through in order to have a successful transmission process. This delay was

somehow enhanced by using the Hash functions [9] to generate the keys, but it did not have the ability to

generate enough amount of keys to be used by the sender and the receiver, especially if the data size is large.
Another issue was to inspect if any misbehavior has occurred by any security threat while sending the data

from the sender to the receiver. This process of checking the correctness of the data, which is known as Data

Integrity, costs additional delay to the transmission process. The existing data integrity checking techniques

uses the hash functions, creates an encrypted value known as the digest at both the end-users, and then

compares these values after the receiver gets the data [7].

In this work, different techniques are used in various phases to provide more data security and

maintain data integrity for our proposed solution. AES and RSA algorithms are both used to encrypt and

decrypt both the plaintext and digest after hashing the plaintext itself using the MinHash and Pearson

Hashing. Encrypting the plain text and decrypting the ciphertext is to ensure security as usual. On the other

hand, encrypting and decrypting the digest of hashing the plaintext is to ensure that the data has been not

changed while receiving at the receiver side. Also, it will enhance the checking functionality of large data to
be received as the original text. The MinHash function in this work is mainly used for encryption and

comparison purposes. Our methodology consists of three phases as shown in Figure 1.

Figure 1. High level architecture for the proposed solution

Phase 1 generates different public-private pairs using the MinHash technique. Phase 2

encrypts/decrypts data and digests after hashing the plaintext using an encryption algorithm. The final phase

checks the integrity of data using the MinHash similarity technique. This paper overcomes the delay in both

the key generation phase and the data integrity phase by using a new form of the Hash function known as the

MinHash Function. The MinHash function is considered to be a fast technique to estimate the similarity of

two sets. It is used in the transmission process to check the data integrity without adding delay, which can
slow the overall process, and providing accurate results to know if the data has been altered or not. The

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Enhancement in Data Security and Integrity using MinHash Technique (Sa’ed Abed)

1741

MinHash technique is also used along with the Pearson Hash function to generate a small digest size of 8-bit.

This will increase the level of security by having two-level hashing. The results after comparing the original

RSA [10] and AES algorithms and the modified ones by using the MinHash technique showed that the

MinHash technique improved the Encryption time whether the size of the plain text is small or large. It also

improved the security level as well by using a two-level hashing algorithm which is the Hashing algorithm

and the MinHash algorithm.

The results showed that the key generation process using the Hash along with the MinHash

techniques is faster than using only the hash functions due to the two-level hashing. Moreover, it was proven

that the Encryption time is faster using the MinHash function for AES by 17.35% and for RSA by 43.93%

for both dynamic and static plain text size. The MinHash technique also generates more keys depending on
the number of produced shingles. The data integrity checking process was accurate and fast by more than

100% for large sets compared with the original data integrity technique align with the speed, it saves capacity

and enhances the memory usage by 100%.

The concept of maintaining privacy and security is addressed in various works using the MinHash

technique. Related work can be analyzed into two major concepts: MinHash algorithm in different

applications and Cryptographic algorithms from security aspects [1]. In [2], cryptographic algorithms such as

DES, RSA, and AES were stated in terms of their performance and the cost evaluation. The evaluation

attributes were the encryption time, the number of encoding bits, the Avalanche effect, and the memory space

used. The key generation process was done by the “KeyGenerator” that is built-in in the packages of Java

Security and Java Crypto. It was concluded that the DES algorithm is the best in terms of the bandwidth,

AES for the cryptographic strength, and finally the BlowFish algorithm in terms of encryption time and
memory.

Different evaluation parameters were discussed in [3] [4], that can be used to compare different

encryption algorithms to choose the best data encryption algorithm to overcome the problem of security-

related issues like authentication and integrity. The analysis shows the effectiveness of each algorithm in

terms of the time it takes in the encryption/decryption process, speed, and throughput.

Krishna et al. [5] proposed a cipher method that encrypts two or multiple messages by using a

pairing function at a time. The key is embedded by the transposition ciphers within the encrypted text. A de-

pairing function is used to decrypt the encrypted message. The encryption/decryption process includes

performing XOR operation, generating keys, and applying the algorithm to generate the cipher text.

A verification hash function (VERIHASH) was proposed in [11] where it ensures secure computing

and identity authorization that affect the security and correctness. The main aspects of the VERIHASH are

semantic modeling, analyzing all the operations that are done on huge sets of arrays and bits and supporting
large-scale analysis via compositional verification. This technique works by splitting a cryptographic hash

function implementation into multiple components are based on some variables. Finally, in order to get the

final result, it merges all the obtained verification results of all the different components compositionally.

The partitioning of huge binary program collections that contain duplicates and near-duplicated

using clustering algorithms based on MinHash function properties and the structure was discussed in [12]. It

partitions the collections into smaller groups of similar elements. This is done when computing the disparity

of two elements in the group by using the distance function. Boolean features from the binary program are

extracted to compute the Jaccard distance between the sets. Using the MinHash functions helps to cognizance

the probability of two sets having the same MinHash value similar to their Jaccard distance value. Then,

applying the pairwise distances between the elements in the same partition.

A MinHash-based Jaccard similarity computation (MH-JSC) mechanism was proposed in [13] to
overcome the privacy issues in the Jaccard similarity computation. The MinHash function satisfies the

differential privacy definition regarding the set operations. Then, the strict differential privacy in MH-JSC is

achieved by proposing the PrivMin algorithm. The algorithm consists of: Generating the Private MinHash

value and MinHashing randomization. The results discovered that the proposed algorithm can assure privacy

while computing similarity.

Orencik et al. [14] utilized the Minhash functions to propose an efficient privacy-preserving multi-

keyword search method through encrypted cloud data. The uses of MinHash function in the proposed

mechanism regarding the searching process was to ensure the efficient similarity between signatures of

documents and queries to be compared. Also, the tf-idf approach has been used to prevent unnecessary

communication and computation load on the user to maintain the security wise.

In [15], a MinHash algorithm used to search a fuzzy keyword was discussed to improve the

efficiency of the ciphertext retrieval and lowering storage. In addition to minimizing the complexity,
MinHash fingerprints have been used to avoid the construction of the fuzzy keyword search. The fuzzy

keyword search process helps in reducing keyword index space storage, so it has been applied over several

servers and users that have both properties of preserving the security and privacy of data. That led to retrieve

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 21, No. 3, March 2021 : 1739 - 1750

1742

and prove the security of the keyword have when generated the keyword fingerprint improved efficiency and

accuracy.

On the other hand, a one-way hash function algorithm was proposed in [16] to ensure data integrity,

message authentication, and a digital signature of the security within a minimum delay of security called

OSHA. The idea of the OSHA algorithm is to extend the number of bits to be used such as a variable of 16

bits of the message to be generated has been extended to eleven chaining which is more than SHA-1 and

SHA-2 by using padding bits, dividing into blocks, and chaining variables process. As a result, the OSHA

algorithm is more time efficient and faster than SHA-1 and SHA-2.
A different research related to implementing reconfigurable FPGA hardware components that

enable deploying cryptographic algorithms was proposed in [17]. The purpose is to easily configure

algorithms that use encryption and hashing solutions to allow data protection in various scenarios. This

technique utilizes only a small part of an FPGA chip, which can be readily integrated with other processing

needs.

In [18], the authors proposed an algorithm that used to get the near duplicate of documents in which

these documents are similar to small differences called CentralMatch algorithm. Then, they compared

between CentralMatch algorithm with the MinHash algorithm for finding the similarity in terms of short time

execution and accuracy. The MinHashing is to find the similarity between two documents regardless of the

location. Their proposed solution found that the CentralMatch is better performance and accuracy than

MinHashing.

Chauhan et al. [19] proposed a fastest search technique of text documents by dividing the documents
into shingles using k-shingle and finding the similarity between sets using Jaccard similarity. Then, the

authors used Bloom Filtering to reduce the search time of the hashing shingles. As a result of their

experiments, they used a new fast technique to find the similarity between signatures which is small size than

the hashing values of shingles locality sensitive hashing (LSH). An implementation of signatures detection

according to user-agent abnormality through malware HTTP traffic by using a systematic method was

proposed in [20].

In [21], Ioffe proposed a new novel method that figures the drawing similarity between two inputs.

He compared the proposed similarity method and the Jaccard similarity technique to find the probability of

drawing the similarity of inputs. The other comparison came with MinHashing that divides the inputs into

sets to find the identical drawing. The proposed solution reduces the running time of hashing which produces

a smaller size of strings hashed using MinHash to give a more accurate estimation for identical drawing
inputs.

In [22], recent robust encryption filed approach using the principles of MinHash technique and K-

shingle was proposed to overcome the weaknesses in generating the cipher key for the cryptographic

algorithms. This approach generates the block keys using the K-Shingle used in the MinHash technique to

convert the text file into a sequence of consecutive words. The MinHash technique uses many hash functions

to generate the cipher keys and then to encrypt the text files in many cryptographic algorithms like DES,

Triple DES, AES, and Blowfish. The analysis of this approach shows that AES and Blowfish algorithms are

the best in terms of throughput, CPU usage, and encryption time and memory space.

The work in [22] is the most related work to ours since it discusses the MinHash technique to

encrypt files. The main aim of the research was to compare some types of cryptographic algorithms regarding

the encryption time, throughput, memory used, and the avalanche effect. The common between our paper and
[22] is that the keys are generated using a Hash function and the MinHash technique. However, our work

uses another type of hash function called the Pearson function, which generates an 8-bit digest faster. The

main drawback of [22] is not clearly stating the importance of the MinHash technique and its contribution in

enhancing the performance of encrypting the files. Moreover, the steps of the encryption/decryption process

are the same as the existing solutions and this work does not include any progress to check for the data

integrity.

Our work, however, focuses on how to generate keys using the MinHash technique that creates an 8-

bit digest with the help of Pearson Hash function and then encrypts it. This technique can create large

amounts of keys that can be used in the transmission process later. MinHash function is also used in the

proposed solution to check the data integrity since this digest will also be created at the receiver side, these

two digests are then used to compare between them and check if any changes have occurred. The proposed

procedure expedites the key generation and the data integrity process since it uses the Pearson Hash function
and the MinHash function which are both a fast execution function.

As a conclusion, there are many applications where the MinHash technique has been used. The main

scope of this paper is to focus on the MinHash technique in cryptographic algorithms to ensure transmitting

the data without any changes and to speed up the comparison process to find the integrity of transmitting the

data with the help of Pearson Hash function.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Enhancement in Data Security and Integrity using MinHash Technique (Sa’ed Abed)

1743

2. RESEARCH METHOD

In this paper, we propose an approach to enhance the security wise and speed up the checking

criteria of the data transmission in a secured manner to ensure data integrity. The proposed solution consists

of three main phases as shown in Figure 2 the key generation phase, encryption/decryption phase, and the

data integrity checking phase

Figure 2. Detailed proposed methodology

Here are the steps for the proposed solution:

Phase 1: Generate different public-private keys for the sender and receiver using the k-shingle and

MinHash technique as shown in Figure 3.

Phase 2: The Encryption/Decryption phase includes the following steps:

Step 1: Encrypt the plaintext using the RSA encryption algorithm with the public key as shown in
Figure 4. At the same type, hash the plaintext using Pearson Hash function to generate 8-bit digest (Digest A)

as shown in Figure 5. Then, encrypt the digest using the same RSA encryption algorithm with the public key.

Step 2: Decrypt both the digest and encrypted data using the private key from the receiver side as

shown in Figure 4.

Figure 3. Key generation phase

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 21, No. 3, March 2021 : 1739 - 1750

1744

Figure 4. Encryption/Decryption data phase

Step 3: Hashing the decrypted data using the Pearson Hash function again to generate an 8-bit digest

(Digest B) as shown in Figure 5.

Figure 5. Data Integrity phase

Phase 3: To find the similarity between Digest B and Digest, both digests are divided using the k-

shingle technique and then input to MinHash. The Signature matrix is next computed to reduce the execution

time.

After that, the Jaccard similarity technique is used to obtain the similarity ratio of digest A

signatures and digest B signatures as shown in Figure 5.

2.1. Key generation phase

This phase includes two different steps to generate a secure pair of keys for the sender and the

receiver.

2.1.1. K- shingle
The first step uses the shingling process which splitting the input data into substrings depends on the

length of K that is assumed to be a certain value from the beginning of the process, and then converting these

substrings into integers. The number of shingles is equal to (n-K+1), where n is the number of words in the

input data, K is the shingle length that set from the beginning.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Enhancement in Data Security and Integrity using MinHash Technique (Sa’ed Abed)

1745

For example; if the input data is “This is a plain text”, and the value of K=4, then the number of

generates shingles will be (5-4+1=2). This means that the generated shingles after removing the punctuation

and the double spaces will be of length 2 and will be the following: “This is a plain”, “is a plain text”. Each

of these shingles will be applied to a Hash function to generate different integers. The minimum result of the

Hash function, which is known as the value “x” will be then applied to the MinHash to generate the keys.

2.1.2. MinHash function

MinHash function takes the value x as an input and applies it to (1) as shown in Figure 3:

𝒉(𝒙) = (𝒂𝒙 + 𝒃)% 𝒄 (1)

The coefficients a and b are randomly chosen integers less than the value of x. c is a prime number

that is slightly bigger than the value of x. The hash function will generate different values when the values of

a & b are changed. For example, if we want to have 4 different keys, we have to generate 4 different hash

functions with different values for a and b in order to use these keys in the cipher process later [23].

2.2. Encryption/decryption data phase

The transmission process of the data between the sender and the receiver needs to be secured. RSA

encryption algorithm is used for the data encryption to ensure the data transit in a secure manner. Therefore,

after generating the public and the private keys for the sender and the receiver from the previous phase, the

generated keys will be used like the following to encrypt/decrypt data as shown in Figure 4:
a) The public key of the sender is used along with the plain text as an input to the RSA Algorithm, the

result of the encryption algorithm is an encrypted data.

b) After receiving the encrypted data, the receiver decrypts it by using the sender’s private key that is

only known to the sender and to the receiver.

2.3. Data integrity

The transmission process of the data between the sender and the receiver needs to meet Data

Integrity criteria, which is the process of guaranteeing that there is no change happened to the data from the

sender and the receiver side. The RSA encryption algorithm used in this work does not guarantee Data

Integrity and may take a long time to check the integrity of large data transmission. Hence, the data integrity

process runs various steps as shown in Figure 5.

2.3.1. Hashing plaintext

At this stage, the Pearson Hash function is used to receive the digest from both the sender and

receiver side; At the sender side, the original plaintext will be hashed to get Digest A with 8-bit. On the

receiver side, the decrypted data will be hashed using the same type of hash function to get Digest B with 8-

bit.

Person Hashing [24] is used to execute any input size of plaintext efficiently and generate an 8-bit

digest even for a larger size. This will help to speed up the checking procedure when comparing two sets to

find the similarity with 8-bit of digests using the MinHash function. The duplication of hashing the plain text

with Pearson and MinHash function improves security.

2.3.2. Encryption/decryption digest
At this stage, we use the RSA algorithm to increase the security level of transferring the digest in

parallel of securing the data transmission. To encrypt/decrypt the digest (Digest A), the same generated

public and private keys that have been used for the data encryption process will be used as the following:

a) The public key of the sender is used along with the digest as an input to the Encryption Algorithm

(RSA), the result of the encryption algorithm is an encrypted digest (Encrypted Digest A).

b) After the receiver receives the encrypted digest, it will decrypt by using the receiver’s private key

that is only known to the sender and to the receiver (Decrypted Digest A).

2.3.3. Digest comparison

At this stage, we explain the procedure used to determine the similarity between two digests using

MinHash. The digests need to be represented as sets. First, the k-shingle of consecutive characters is used to
divide the digest. In our work, we assume k = 2, so we obtain four shingles of 2-shingle for the digest.

Second, obtain a big set containing all shingles without any duplication. In the third step, the flag matrix

should be created that represents the digests as columns and the elements of the two digests combined as

rows. A cell is given the value 1 when a shingle of the digest is part of the big set, 0 otherwise. At the same

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 21, No. 3, March 2021 : 1739 - 1750

1746

time, the flags, also known as the signatures, are the values after using Pearson hash function and shingling.

This what we called MinHash technique that allows us to replace a large set (digest) with a smaller

probability value. Thus, the similarity of small lists which are the signatures predicts the similarity of the

original sets (Digests) [23]. Therefore, from the first step, we speed up the process and eliminate the

signature matrix by providing a set with 8-digit.

Jaccard Similarity technique is applied to determine the similarity of the signature vectors for the

sets; Jaccard Similarity is the ratio of the size of the intersection of the two sets to the size of Union of the

two sets.
For sets A and B J (A, B) = |A ∩ B| / |A U B|

Data Integrity steps are as follows:

1. Break down the digests into shingles each shingle of size 2 after hashing the plaintexts using Pearson

hash function.

2. Get a big set that includes all the shingles of both digest without any shingle duplication.

3. Find Flag for each shingle of each digest between 0 and 1 called signatures. The 1 flag means the shingle

of digest appears at the big set, otherwise, it is 0 (MinHash Technique to replace shingle value with

small value 0/1).

4. Find the similarity between the signatures using the Jaccard Similarity Technique.

3. RESULTS AND DISCUSSION

The three phases are implemented using Java language on Eclipse and NetBeans software. The AES

and RSA algorithms are implemented using the SecretKeySpec [25] and PKCS8 [26] libraries, respectively.

However, the similarity technique is originally developed according to the steps stated in the proposed

method. In this work, the testing phase examines the original source code for AES, RSA, and data integrity.

We, then, modify the source code according to our method and finally compare the results of the original and

modified source code.

3.1. Key generation for encryption/decryption phase

3.1.1. AES

In this phase, the original AES algorithm along with the SecretKeySpec, which is a built-in class in
Java. The SecretKeySpec constructs a secretKey from a byte array without consulting a provider as the

SecretKeyFactor does. This algorithm generates one key for the sender and another key for the receiver. The

modification incorporated in the AES algorithm is using the keys that were generated from the MinHash

algorithm instead of the SecretKeySpec. The comparison between the two algorithms is accomplished

according to the encryption time, which is the amount needed to convert plaintext to an encrypted text as a

function of key and data block sizes.

Table 1 compares AES with the SecretKeySpec and AES with MinHash. It clearly shows that AES

with MinHash outperforms AES with SecrtKeySpec by an average of 17.35%. Also, as the number of words

in the plain text increases the encryption time increases. The results prove that the MinHash can improve the

time of the encryption process for dynamic plain text sizes.

Table 1. AES Algorithms comparison
No. of

words

AES with

SecretKeySpec

AES with MinHash

Algorithm

MinHash Algorithm’s %

compared to SecretKeySpec

200 19133.06 17647.38 8.4 %

400 21235.55 18093.41 17.36%

600 25057.06 22847.99 20.189%

800 29882.52 24827.49 20.36 %

1000 31327.71 27001.55 20.484%

3.1.2. RSA

The testing phase for the key generation of the RSA algorithm was done using the RSA with

PKCS8, which is a standard syntax for storing private key information generated using the KeyGenerator
library. The modification was done using the MinHash function to generate the private and the public key in

the encryption and the decryption phase.

Table 2 shows the comparison between RSA with PKCS8 and RSA with the MinHash technique. It

shows that our method achieves 43.93% in performance improvement against the original RSA algorithm.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Enhancement in Data Security and Integrity using MinHash Technique (Sa’ed Abed)

1747

This obvious enhancement is due to the poor performance of the original RSA algorithm, which is considered

the slowest among other cryptographic algorithms. Our approach maintains outperforming the other one as

the size of the plain text increases.

Table 2. RSA Algorithms comparison
No. of

words

RSA with

PKCS8

RSA with MinHash

Algorithm

MinHash Algorithm’s %

compared to PKCS8

200 42849.1 29747.14 42.99%

400 50289.79 35169.27 44.173%

600 58047.62 42847.19 43.11%

800 65785.04 49274.93 45.12%

1000 74958.1 54815.4 44.28%

3.2. Data integrity

We perform data integrity by finding the similarity between the original set and the decrypted set as

discussed earlier. Normal MinHash technique is usually used to find the similarity between sets, and it works

as the following steps:

1. Break down the documents into a set of shingles.

2. Calculate the hash value for every shingle.

3. Store the minimum hash value found in step 2.

4. Repeat steps 2 and 3 with different hash algorithms with random times to get the min hash values.
Compared with our proposed methodology to find the similarities between two sets. Pearson hash

function has been used to obtain 8-digit hash value to minimize the set size then comparing these hash

values. Our proposed method again works as follows:

1. Hash two sets (original set and encrypted set) to get 8-digit hash values for each set.

2. Break down the digests into shingles, each of which has a size of 2.

3. Get the large set that includes all the unique shingles of both digests.

4. Find the flag for each shingle of each digest that takes a signature value between 0 and 1. The flag value

of 1 means that the shingle of the digest appears in the large set. Otherwise, it appears in the small set

when the value equals zero.

5. Find the similarity between the signatures utilizing Jaccard Similarity Technique.

Here is an example of a data integrity procedure:

Let’s assume that we Hashed the A and B sets using the Pearson Hash function. Then get the
shingles of size 2 for each digest.

Shingles of digest A = {ab, cd, ef, gh}

Shingles of digest B = {ab, cd, ot, ky}

The Large set let assume to be C = A U B = {ab, cd, ef, gh, ot, ky}, which is the large set that

includes all the unique shingles of both digests.

After that need to compare each shingle of each digest with the large set to create a flag set for each

with 0,1 values. The flag 1 means it includes in the C otherwise not, as the following:

Flag of A = {1, 1, 1, 1} Flag of B = {1, 1, 1, 1}

After that, using the Jaccard Technique to find the similarity ration between Flag A and Flag B as

shows in Table 3.

Table 3. Data Integrity time results
Large

Set C

Shingles of

Digest A

Shingles of

Digest B

Flag

of A

Flag of

B

ab ab ab 1 1

cd cd cd 1 1

ef ef 1 0

gh gh 1 0

ot ot 0 1

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 21, No. 3, March 2021 : 1739 - 1750

1748

For sets Flag A and Flag B = J (Flag A, Flag B)

= |Flag A ∩ Flag B| / | Flag A U Flag B| = 2/6 = 1/3

By comparing both techniques, we prove that our method has better performance than the existing

method in finding the similarity between the two sets. And it has a better memory utilization for finding 8-

digit hash value. Table 4 shows the sizes of the different scenarios used in the experiment. The original

method to find the similarity is using either Jaccard or MinHash. But in our proposed method, the mixture

between MinHash, Jaccard, and Pearson Hash has been used. The Pearson is used to minimize the data size
input to MinHash to find the similarity instead of finding the similarity of the original data.

Table 4. Different scenarios with various sizes for Data integrity set
Scenario Size of Original Set 1 Size of Original Set 2

1 Similar two small static* size sets 12 12

2 Similar two medium static size sets 68 68

3 Different two small static size sets 12 12

4 Different two medium static size sets 68 68

5 Different two sets with dynamic** size 68 12

6 Different two sets with dynamic large size 1337 2784

7 Different two sets with static large size 1337 1337

8 Similar two sets with static Large size 1337 1337

9 Similar two sets with static Large size 1337 1337

*two static size sets, which are two sets with similar number of words

**two dynamic size sets, which are two sets with different number of words

For a larger size set, our proposed method incurs a lower delay compared to the normal one.

Moreover, it saves a memory resource by consuming a small amount of storage than the normal technique

which utilizes a huge amount of storage. Hence, our proposed technique is more powerful especially for large

data set compared with the existing technique to find the similarity. The results show a big gap in time

between the two techniques, which leads to better performance in a term of speed using our approach. At the

same time, the results show the increasing trend according to the memory utilization between the two

techniques. From all these results as shown in Table 5, our approach has better performance in terms of fast

time execution than the existing approach by at least 3% for small/medium size and exceed 100% between
288% to 295% for large size and has less memory utilization than existing approach by at least 15% for

small/medium size increasing to exceed 100% for the large size.

Table 5. Data integrity enhancement ratio for different scenarios
Scenario Proposed Result Other Results (Existing)

1 4.84306 21.901423

2 8.285231 90.200064

3 4.876641 20.747053

4 5.920393 75.58318

5 5.818466 49.484228

6 6.241973 45.516624

7 75.48876 40771.17244

8 62.371531 16152.44004

9 62.745655 19465.74875

4. CONCLUSION

The key advantage of our proposed solution is to increase the level of security and integrity of the

data transfer simultaneously. The power of this solution came from merging asymmetric encryption

technique with the MinHashing technique. The asymmetric technique used at both encrypting/decrypting

data and the digest of hashing the plaintext. Moreover, the MinHashing technique has been used for two

various locations. The first use is for generating different pairs of public-private keys for the encryption

phase. The other use is for determining the similarity for the two digests of the original plaintext with less

delay to ensure the data integrity. This enhancement sacrifices the security of data transmission as the whole

method is based on having a faster process by generating keys in a faster manner using the Hash function

without changing anything in the algorithm that is used to handle the data transmission. But there is a small

improvement at security aspects that the encryption/decryption algorithm based on the random keys
generated from the MinHash and Shingling function which have a one-way output of digest and avoid

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Enhancement in Data Security and Integrity using MinHash Technique (Sa’ed Abed)

1749

returning to the original data. Compared with the usual techniques for data security and integrity, using the

MinHash technique for generating keys and finding the similarity with the help of Pearson hash function and

different encryption algorithms demonstrates that the method can provide more data security and integrity.

The experimental results show that the efficiency of engaging the MinHash to the proposed method can

improve and enhance the data in terms of increasing the security wise and fast determination of data integrity

in terms of time and accuracy. In addition, the results show better performance to transmit the data in a

secure manner with more accuracy. For future work, more algorithms will be tested by using the MinHash

technique in order to find the best algorithm in terms of security and accuracy. Also, more metrices can be

added as the throughput in order to compare all the tested algorithms with more than one metric to have a

deeper study on the behavior of the cryptographic algorithms.

REFERENCES
[1] Chandra, S., Paira, S., Alam, S.S. and Sanyal, G., "A comparative survey of symmetric and asymmetric key

cryptography," In 2014 International Conference on Electronics, Communication and Computational Engineering
(ICECCE), pp. 83-93. IEEE, 2014.

[2] Patil, P., Narayankar, P., Narayan, D.G. and Meena, S.M., "A comprehensive evaluation of cryptographic
algorithms: DES, 3DES, AES, RSA and Blowfish," Procedia Computer Science, vol. 78, pp. 617-624, 2016.

[3] Rezai, A., and Keshavarzi, P., "High-performance scalable architecture for modular multiplication using a new
digit-serial computation," Microelectronics Journal, vol. 55, pp. 169-178, 2016.

[4] Yadav, G., and A. Majare, "A comparative study of performance analysis of various encryption algorithms," In
International Conference on Emanations in Modern Technology and Engineering, vol. 5, no, 3, pp. 70-73. 2017.

[5] Krishna, B.H., Reddy, I.R.S., Kiran, S. and Reddy, R.P.K., "Multiple text encryption, key entrenched, distributed
cipher using pairing functions and transposition ciphers," In 2016 International Conference on Wireless

Communications, Signal Processing and Networking (WiSPNET), pp. 1059-1061. IEEE, 2016.
[6] Asis, K., Tapan, K. and Navaneethan, C., "Data cryptography based on musical notes on a fingerboard along with a

dice," Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 14, no. 3, pp.1286-1290,
2019.

[7] Kumari, Sarita, "A research paper on cryptography encryption and compression techniques," International Journal
of Engineering and Computer Science (IJEECS), vol. 6, no. 4, pp. 20915-20919, 2017.

[8] Sodhi, G., Gurjot, S., Lavish, K., Eduard, B., Mohammed, A., Sandeep, K. and Mehedi, M., "Preserving
Authenticity and Integrity of Distributed Networks through Novel Message Authentication Code," Indonesian
Journal of Electrical Engineering and Computer Science (IJEECS), vol. 12, no. 3, pp. 1297-1304, 2018.

[9] Quilala, Rogel, L., Ariel M. and Ruji, P., "QR Code Integrity Verification Based on Modified SHA-1 Algorithm,"
Indonesian Journal of Electrical Engineering and Informatics (IJEEI), vol. 6, no. 4, pp. 385-392, 2018.

[10] Shahab, W., Raghad, Z. and Shadan, M., "An approach for enhancing data confidently in Hadoop," Indonesian
Journal of Electrical Engineering and Informatics (IJEEI), vol. 20, no. 3, pp. 1547-1555, 2020.

[11] Wang, D., Jiang, Y., Song, H., He, F., Gu, M. and Sun, J., "Verification of implementations of cryptographic hash
functions," IEEE Access, vol. 5, pp.7816-7825, 2017.

[12] Oprisa, C., "A MinHash Approach for Clustering Large Collections of Binary Programs," 2015 20th International
Conference on Control Systems and Computer Science, Bucharest, pp. 157-163, 2015.

[13] Yan, Z., Liu, J., Li, G., Han, Z. and Qiu, S., "PrivMin: Differentially Private MinHash for Jaccard Similarity
Computation," arXiv preprint arXiv: 1705.07258, 2017.

[14] Orencik, C., Kantarcioglu, M. and Savas, E., "A practical and secure multi-keyword search method over encrypted
cloud data," In 2013 IEEE Sixth International Conference on Cloud Computing, pp. 390-397, 2013.

[15] He, J., Wu, J., Zhu, N. and Pathan, M., "MinHash-Based Fuzzy Keyword Search of Encrypted Data across Multiple
Cloud Servers," Future Internet, vol. 10, no. 5, p.38, 2018.

[16] Tiwari, N. and Sinhal, A., "An Implementation on Secure Hash Algorithm in Wireless Algorithms to Ensure the
Integrity," International Journal of Computer Science and Information Technologies (IJCSIT), vol. 5, no. 3, pp.

4779-4781, 2014.
[17] Szefer, J., Chen, Y.Y. and Lee, R.B., "General-purpose FPGA platform for efficient encryption and hashing," In

ASAP 2010-21st IEEE International Conference on Application-specific Systems, Architectures and Processors, pp.
309-312, July, IEEE, 2010.

[18] Park, H., Lee, S.C., Lee, S.H. and Kim, S.W., "Centralmatch: A fast and accurate method to identify blog-
duplicates," In 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent
Technology, vol. 1, pp. 112-119. IEEE, 2010.

[19] Chauhan, S.S. and Batra, S., "Finding similar items using LSH and Bloom Filter," In 2014 IEEE International

Conference on Advanced Communications, Control and Computing Technologies, pp. 1662-1666. IEEE, 2014.
[20] Kheir, N., "Behavioral classification and detection of malware through http user agent anomalies," Journal of

Information Security and Applications, vol. 18, no. 1, pp. 2-13, 2013.
[21] Ioffe, S., "Improved consistent sampling, weighted minhash and l1 sketching," In 2010 IEEE International

Conference on Data Mining, pp. 246-255. IEEE, 2010.
[22] Manaa, M.E. and Jwdha, R.H., "A Robust Encryption Files Approach using Minhash Technique," International

Journal of Pure and Applied Mathematics, vol. 119, no. 15, pp.169-183, 2018.
[23] Leskovec, J., Rajaraman, A. and Ullman, J.D., "Mining of massive datasets," Cambridge university press, 2014.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 21, No. 3, March 2021 : 1739 - 1750

1750

[24] "Pearson Hashing," https://programmingpraxis.com/2018/05/25/pearson-hashing/, created 24 May 2018.
[25] "Example of AES encryption and decryption in Java,"

https://gist.github.com/SimoneStefani/99052e8ce0550eb7725ca8681e4225c5, accessed 12 Feb. 2020.

[26] "RSA Encryption and Decryption in Java," https://www.devglan.com/java8/rsa-encryption-decryption-java,
accessed 12 Sep. 2019.

BIOGRAPHIES OF AUTHORS

Sa’ed Abed received his B.Sc. and M.Sc. in Computer Engineering from Jordan University of

Science and Technology, Jordan in 1994 and 1996, respectively. In 2008, he received his Ph.D.
in Computer Engineering from Concordia University, Canada. He has previously worked at King
Faisal University in Saudi Arabia from 1997-2003. He joined Hashemite University, Jordan, as
an Assistant Professor from 2008-2014. Currently, Dr. Abed is an Associate professor in the
Department of Computer Engineering at Kuwait University. His research interests include
Formal Methods, VLSI Design and Image Processing. He also served as a reviewer for various
international conferences and journals. Dr. Abed published over 90 papers in reputable journals
and conferences.

Lamis Waleed received the B.S. degree in computer engineering from College of Petroleum and
Engineering, Kuwait University, in 2018. She is completing her master’s degree in computer
engineering, Kuwait University. She is currently working as a computer instructor in Kuwait
Technical college. Her research interests include wireless communications, network security,
network management and artificial intelligence.

Ghadeer Aldamkhi grew up and graduated from Kuwait University, College of Petroleum and
Engineering and received her Computer Engineering bachelor’s degree in 2015. She is
completing the master’s degree in the Computer Engineering field. Currently, she is working at
Telecom Company in Kuwait since 2017 and has a background about many aspects; in
networking, development, system integration and hardware field.

Khaled Hadi received his Ph.D. from the University of Massachusetts, Amherst, in 2009, in
Electrical and Computer Engineering and his MS Degree from the School of Information and

Computer Sciences, University of California, Irvine, in 2004. He received the BS in Computer
Engineering in 1999 from Kuwait University. He is currently an assistant professor of computer
engineering at Kuwait University. His research interests include sensor networks, computer
networks, distributed systems, and operating systems.

