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 This paper presents a compact design of Montgomery modular multiplier 

(MMM). MMM serves as a building block commonly required in security 

protocols relying on public key encryption. The proposed design is intended 

for hardware applications of lightweight cryptographic modules that is utilized 

for the system on chip (SoC) and internet of things (IoT) devices. The proposed 

design is an enhancement of the original MMM without any multiplication or 

subtraction processes. The main target of the new modification is enhancing 

the performance and reducing the area of the MMM hardware module. The 

operands and internal variables of the proposed hardware circuit is optimized 

to be bounded to the smallest efficient size to minimize the area and the critical 

path delay. The proposed design was coded in VHDL, implemented on the 

Virtex-6 FPGA, and its performance was analyzed utilizing XILINX ISE 

tools. Our design occupies the smallest area comparing with other 

implementations on the same FPGA type. The proposed design saves in a 

range between 60.0% and 99.0% of the resources compared with other relevant 

designs.  
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1. INTRODUCTION 

Cryptography is an important area of concern in the field of information security [1]. The most 

commonly used public-key cryptographic algorithms, such as RSA, Digital Signature Algorithm (DSA) and 

Elliptical Curve Cryptography (ECC), primarily rely on modular multiplication [2]. Therefore, a cryptographic 

system with high performance depends on the construction of modular multiplication. A Montgomery modular 

multiplier (MMM) is the widely used modular multiplier [3]. MMM is an effective technique for implementing 

the modular multiplication with large operands in high-performance hardware [4, 5]. For security schemes 

which are based on public key cryptography, it is important to use hardware modules to achieve a high 

performance. The security provided by means of public key cryptographic algorithms request a large number 

of arithmetic operations on abstract algebraic structures (finite fields and groups) [2]. Furthermore, these 

operations are conventionally executed over large numbers (160-3072 bits), which makes them considerably 

time-consuming operations. This issue has motivated the researchers to modify new hardware, specialized for 

accelerating the computation time as the focal design goal, which comes at the cost of high hardware resource 

consumption. However, a major problem with this kind of applications is that, the embedded systems require 

a fewer hardware resources. Therefore, this aspect is one of the greatest challenges of implementation of the 

https://creativecommons.org/licenses/by-sa/4.0/
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light-weight cryptographic systems. The preferred solution is applying cryptographic algorithms on the Field 

Programmable Gate Array (FPGA). The FPGA is low-cost, versatile and robust. For cryptographic systems in 

particular; FPGA is able to reconfigure for any new security requirements. Low-cost and low-power FPGAs 

are available on the market and are expected to become popular with applications like the Wireless Sensor 

Network (WSN) or the Internet of Things (IoT) [6-9].  

This research presents a new approach to the MMM algorithm with higher efficiency and lower area 

costs, which is an important factor in the implementation of embedded devices systems. The proposed 

algorithm is a modification of the radix-2 MMM structure to improve the area and the efficiency, no subtraction 

operations are performed. The previous modification of MMM to discard the final subtraction presented a new 

set of parameters and more cycles [10, 11]. This method involved a calculation of the Montgomery product 

with longer operands and more iterations, which could reduce performance seriously. Our work imposes a 

tighter bound on previous assumptions, with no increase in operand size or number of iterations, which enables 

us to advance the hardware implementation efficiency. The compact structure of the proposed design over the 

other competitive designs is appropriate for embedded systems and hardware applications of the IoT devices. 

The proposed design has been coded in VHDL, and targeted Virtex-6 FPGA platform. The proposed design 

has been synthesized utilizing Xilinx ISE, and simulated utilizing ModelSim. The new approach various bit-

length (160-1024) has been compared with the related works in terms of area in Slice LUTs, frequency in MHz, 

time in 𝜇𝑠, throughput in Mbps, Area-Time and efficiency (Mbps per FPGA LUT). A comparison of the results 

reveals the improvement of the utilized hardware resources of the proposed design over the related works.  

The rest of the paper is organized as follows. Section 2 explorers the classical algorithm of Modular 

Multiplier Reduction, the original MMM, and radix-2 MMM. Section 3 describes the algorithm, the hardware 

implementation, and the bounds on the Inputs/Outputs (I/O) of the proposed design. Section 4 provides the 

simulation and the synthesis results of the implementation of the proposed design. The bounds on the 

Inputs/Outputs (I/O) of the proposed design has been analyzed. The simulation of the proposed design and the 

accuracy of the design has been verified using ModelSim. The synthesis results of implementing the proposed 

design on XILINX Virtex-6 FPGA have been provided utilizing Xilinx ISE. Finally, Section 5 concludes our 

contribution work.  

 

 

2. BACKGROUND 

2.1.  Classical modular multiplication 

Algorithm 1 is a straightforward algorithm to compute the modular reduction of two multiplied 

integers 𝒜, B. The first step is obtaining the product α of the integer numbers. The reduction modulo 𝓂 step 

usually involves a division operation 𝒟 of α by the modulus 𝓂, q is the quotient. Computation of the quotient 

𝑞 and remainder 𝒫 when 𝛼 is divided by 𝓂 is demonstrated in [12]. The third step is obtaining the residue 𝒫 

of the division operation as the result of modular multiplication reduction. It is a very time-consuming operation 

on both hardware and software platforms.  

 
Algorithm-1 Classical Modular Multiplier 

INPUT: Integers (𝒜, ℬ , 𝓂 ) 

OUTPUT: 𝒫 = 𝒜 × ℬ 𝑚𝑜𝑑 𝓂. 

1. 𝛼 = 𝒜 ×  ℬ; 
2. 𝒟 =  𝛼/𝓂 = 𝑞𝓂 + 𝒫; 
3. Return (𝒫). 

 

2.2.  Montgomery modular multiplier algorithm 

Montgomery introduced a technique to avoid the division process for the modular reduction of product 

of two integers [3]. For the three integers (𝒜, ℬ, 𝓂), Montgomery substituted the division by modulus 𝓂 with 

the division by modulus 𝑅. The Montgomery approach to calculate the reduction product of modulo 𝓂 for two 

integers 𝒜 and ℬ is listed: 

a) Choosing R > 𝓂. R is an integral power of 2. The integer 𝓂 must be odd to satisfy the condition 

𝐺𝐶𝐷(𝑅, 𝓂) = 1.  

b) Precompute the integers 𝑅−1𝑎𝑛𝑑 �̀� such that:  

 

𝑅𝑅−1 − 𝓂�̀� = 1 (1) 

 

𝑅−1 ≡ 1 𝑚𝑜𝑑 𝑚 (2) 

 

�̀� = −𝑚−1 𝑚𝑜𝑑 𝑟 (3) 
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c) Transform the operand to its Montgomery domain, which is known also with 𝑅𝐸𝐷𝐶 function [3].  

 

𝑅𝐸𝐷𝐶(𝑥, 𝑦) = 𝑥 × 𝑦 × 𝑅−1𝑚𝑜𝑑 𝑚 (4) 

 

�̅� = 𝑅𝐸𝐷𝐶(𝒜, 𝑅2) = 𝒜 × 𝑅 𝑚𝑜𝑑 𝓂 (5) 

 

ℬ̅ = 𝑅𝐸𝐷𝐶(ℬ, 𝑅2) = ℬ × 𝑅 𝑚𝑜𝑑 𝓂 (6) 

 

Giving the product in Montgomery domain such that: 

 

�̅� = 𝑅𝐸𝐷𝐶(�̅�, ℬ̅) = 𝒜 ×  ℬ × R 𝑚𝑜𝑑 𝓂 (7) 

 

If �̅� >  𝓂 then �̅� =  �̅� − 𝓂 (8) 

 

The previous step is expensive due to its reduction modulo 𝓂. Therefore, Montgomery applied a more 

efficient way to calculate it.  

 

𝑅𝐸𝐷𝐶(𝑥, 𝑦) =
(𝒮+𝒮 �̀� 𝑚𝑜𝑑 𝑅 )𝑚 )

𝑅
 (9) 

 

where 𝒮 =  𝑥 × 𝑦. This equation is applied for �̅�, ℬ̅, �̅�. To reveal the final result, it is necessary to inverse 

transformation of the Montgomery domain to its original form: 

 

𝑅𝐸𝐷𝐶(�̅�, 1) =
(�̅�+�̅� �̀� 𝑚𝑜𝑑 𝑅 )𝑚 )

𝑅
 (10) 

 

The preceding approach is slow because of a lot of addition and multiplication operations. More 

efficient approach is demonstrated in Algorithm-2, the algorithm Montgomery Modular Multiplier (denoted as 

MMM algorithm).  

 
Algorithm-2 Montgomery Modular Multiplier (MMM) 

Input: Integers (𝒜, ℬ, 𝓂)[ 𝑘 bits] radix 𝑟 representation 

where 0 ≤  (𝒜, ℬ) <  𝓂, R = 𝑟k, 𝑔𝑐𝑑 (𝓂, 𝑟) = 1, 
�̀� = −𝓂−1 mod R 
Output: 𝒫 =  𝒜 × ℬ × R−1 𝑚𝑜𝑑 𝓂  

1. 𝒫 =  0; 
2. For (𝑖 from 0 to k − 1, 𝑖 = 𝑖 + 1) do 

3. 𝑡𝑖 = ((𝒫0 + 𝒜𝑖 × ℬ0) × �̀�)Mod r; 

4. 𝒫 =  (𝒫 + 𝒜𝑖 ×  ℬ + 𝑡𝑖 × 𝓂)/r; 
5. Loop; 

6. If 𝒫 >  𝓂 then 
        𝒫 =  𝒫 − 𝓂; 
   end If 

7. Return(𝒫). 

 

The new approach utilizes the 𝑅𝐸𝐷𝐶 function for two integer operands 𝒜, ℬ directly. where  

𝒮 =  𝒜 × ℬ. 

 

𝒫 = 𝑅𝐸𝐷𝐶(𝒜, ℬ) =
(𝒮+𝒮 �̀� 𝑚𝑜𝑑 𝑅 )𝑚 )

𝑅
 (11) 

 

For MMM algorithm there are 𝑘 iterations, where 𝑘 is the bit length of the modulus 𝓂. The multiplier 

𝒜 bits are scanned from LSB to MSB, 𝒫0 𝑎𝑛𝑑 ℬ0 are the LSBs of 𝒫 𝑎𝑛𝑑 ℬ respectively. The steps 3 and 4 is 

repeated for every iteration for its corresponding 𝒜𝑖 and for its accumulated 𝒫 according to the step 3 result 1 

or 0; modulus 𝓂 added or not to step 4. To get the validation result the MMM algorithm is used once more.  

 

𝑅𝑒𝑑𝑐(𝒫, 1) =
(𝒫+𝒫 �̀� 𝑚𝑜𝑑 𝑅 )𝑚 )

𝑅
 (12) 
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Algorithm-3 Radix-2 (MMM) 

Input: Integers (𝒜, ℬ, 𝓂)[ 𝑘 𝑏𝑖𝑡𝑠] radix-2 representation. 

where 0 ≤  (𝒜, ℬ) <  𝓂, R = 2k, 𝑔𝑐𝑑 (𝓂, 2) = 1, 
Output: 𝒫 =  𝒜 ×  ℬ × 2−𝑘 𝑚𝑜𝑑 𝓂 

1. 𝒫 =  0; 
2. 𝑭or (𝑖 from 0 to k − 1, 𝑖 = 𝑖 + 1) do 

3. 𝑡𝑖 = (𝒫0 + 𝒜𝑖 × ℬ0) mod 2; 
4. 𝒫 =  (𝒫 + 𝒜𝑖 ×  ℬ + 𝑡𝑖 × 𝓂)/2; 
5. Loop; 

6. If 𝒫 >  𝓂 then 
        𝒫 =  𝒫 − 𝓂; 
   end If 

7. Return(𝒫). 

 

Algorithm-3 demonstrates the Radix-2 version of MMM, where 𝑟 = 2, [13, 14]. Therefor, �̀� = 1. 

The division by 2 in step-4 is a simple one-bit right shift operation. Therefore, for each iteration loop two 

additions are required and the final subtraction (step 8).  

 

 

3. RESEARCH METHOD 

3.1.  Proposed algorithm of the modular multiplier  

The modified MMM Radix-2 modular multiplication algorithm is presented in Algorithm-4. This 

algorithm is the modification of Algorithm-3 without the final subtraction step, and with a modification of the 

construction to reduce the area and enhance the efficiency. In Algorithm-3, the multiplier corresponding bit 𝒜𝑖 

is multiplied by the multiplicand Lest Significant Bit (LSB) ℬ0 in step-3, and by the multiplicand ℬ in step-4. 

In Algorithm-3, the multiplication in step-3 is AND operation, and in step-4 is a Multiplexer. 

 
Algorithm-4 Proposed Modular Multiplier 

Input: Integers (𝒜, ℬ, 𝓂)[ 𝑘 𝑏𝑖𝑡𝑠] radix 2 representation. 
𝑤ℎ𝑒𝑟𝑒 0 ≤  (𝒜, ℬ) <  𝓂, gcd(𝓂, 2) = 1. 
Output: 𝒫 =  𝒜 ×  ℬ × 2−𝑘 𝑚𝑜𝑑 𝓂  

1. α = 0;  

2. 𝐹𝑜𝑟 (𝑖 𝑓𝑟𝑜𝑚 0 𝑡𝑜 𝑘 − 1, 𝑖 = 𝑖 + 1) 𝑑𝑜 

3. If 𝒜𝑖= '1' then  

 γ = ℬ;  
 else 

 γ = 0;  
 End If; 

4. If α1 𝑥𝑜𝑟 γ0 = '1' then 
 Ȥ = γ + 𝓂; 

 else 

 Ȥ = γ; 
 End If; 

5. α = Ȥ + 𝒗; 
6. 𝒗 = α >>1; 
7. Loop; 

8. 𝒫 = 𝒗 
9. Return 𝒫 

 

Nevertheless, in step-3 of Algorithm-4 the value of 𝒜𝑖  utilized only once and select between two 

values; the multiplicand value ℬ or the zero value. The final subtraction in Algorithm-3 is a source of leakage 

and hardware consumption. In order to remove the extra subtraction and have a uniform input and output range, 

Walter [10] proposed altering the range of 𝒜, ℬ, 𝓂 to be within [0, 2𝑘), increasing the number of iterations 

from 𝑘 to 𝑘 + 2, and setting the value of 𝑅 to 2𝑘+2𝑚𝑜𝑑 𝓂 [15, 16]. In Algorithm-4 to decrease the leakage 

and increase the efficiency there is no subtraction operation also, and the output is 𝑘 + 1 𝑏𝑖𝑡𝑠. The precondition 

in [10] of input operands 𝒜 and ℬ is 𝒜 < 2𝓂 and ℬ < 2𝓂, which can strictly degrade performance [17, 18]. 

By contrast, the new modification in this work presented by Algorithm-4 retaining the range of operands and 

modulus within [0, 𝑘), that has been enhanced the performance of the proposed design than the other related 

works. Furthermore, the value of 𝑅 and iterations in the proposed Algorithm-4 is still 2𝑘 and 𝑘,respectively. 

Therefore, these modifications improve the performance of the proposed algorithm. Furthermore, the hardware 

resources and interconnects required will be less, and thus the area consumed is also has been reduced.  
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3.2.  Proposed design of radix-2 MMM  

The hardware circuit for Algorithm-4 is revealed in Figure 1. The proposed design utilizes a counter 

instead of using loop to obtain a reduced area, it needs one Clock for each iteration, the clock increases the 

counter by one. The counter counts 𝑘 iterations. Due to the registers used to synchronize implemented values; 

there is a delay of one more clock, therefore, the counter counts from 0 to 𝑘. The counter is a part of control 

unit responsible for scanning the multiplier 𝒜 from LSB to MSB and get out one bit for iteration (𝒜𝑖). The 

proposed design is composed of one 𝑘 + 1 bit Adder, one 𝑘 + 2 bit Adder, and two Multiplexers. Initially 

register 𝒗 is loaded with zero. The corresponding bit 𝒜𝑖 selects between two values, the multiplicand ℬ if it is 

‘1’ or zero 𝑘 − 𝑏𝑖𝑡𝑠 otherwise. The output of the first Multiplexer is denoted by γ.  

The first Adder executes addition of modulus 𝓂 and γ, the output is loaded to an input of the second 

Multiplexer, the other input is γ. In step-4 of Algorithm-4, the inputs of the XOR gate are the bit of the order 

one of the register α (α𝟏) and the LSB of the register γ (γ0). Α𝟏 is utilized instead of 𝑣0 to reduce the critical 

path delay. The output of the XOR gate is the selector of the second Multiplexer to define even output (Ȥ) of 

the Multiplexer. Step-4 defines the purpose of XOR gate and the second Multiplexer. According to the 

condition that modulus 𝓂 must be odd; (odd integer + 𝓂) is an even integer. If γ is odd it converted to even 

by adding modulus 𝓂 to it, step-4. The second Adder executes addition of accumulator 𝒗 and Ȥ, the output is 

loaded to variable α. The value of α is shifted right one bit, divided by 2, and loaded to the register of the 

accumulated value 𝒗. Those procedures are reiterated for each clock. Thus, the given architecture takes 𝑘+1 

clock cycle to make out the calculation process, subsequently, the value of register 𝒗 is loaded to the output 𝒫. 

The output 𝒫, 𝑘 + 1 𝑏𝑖𝑡𝑠,is the reduction product of the two input integers multiplied by 2−𝑘. The size of the 

hardware components depends on the size of the operands and the modulus for the multiplication process. This 

design can be easily scaled according to requirement for any number of bits. 

 

 

 
 

Figure 1. Proposed modular multiplier circuit 

 

 

3.3.  Bounds on the I/O 

Outputs from multiplications are re-used as inputs throughout the cryptographic systems. So, it's 

important to keep those numbers bound. In particular, for all outputs 𝒫 we will show that 𝒫 < 2𝑘 is 

maintainable. The four variables in the Algorithm-4 are γ, Ȥ, α, and 𝒗, the bounded bit-length of it are 𝑘, 𝑘 +
1, 𝑘 + 2, and 𝑘 + 1, respectively, Figure 1. The maximum value of modulus 𝓂 is: 

 

𝓂 = 2𝑘 − 1 (13) 

 

The precondition of MMM is ℬ < 𝓂, thus, the maximum value of variable γ is the maximum value 

of the multiplicand ℬ: 

 

γ = ℬ = 2𝑘 − 2 (14) 
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The value of variable Ȥ is: 

 

Ȥ = γ + 𝓂 (15) 

 

The maximum value of variable α is: 

 

α = Ȥ + 𝑣ℎ−1 (16) 

 

where, ℎ is the iteration number. The value of the accumulated variable 𝑣ℎ is: 

 

𝑣 =
𝛼

2
 (17) 

 

After the last iteration ℎ = 𝑘 , and the value of the output 𝒫 is:  

 

𝒫 = 𝑣𝑘 (18) 

 

The verification that the output and other variables for 𝑘 = 8 are below the size of their implemented 

hardware variables shown in Table 1. The ceiling function maps 𝛼/2 to the least integer greater than or equal 

to 𝛼/2. In general, the maximum values of the Algorithm-4 variables are as follows for any 𝑘 − 𝑏𝑖𝑡 (𝓐, 𝓑, 𝓶): 

 

γ =  2𝑘 − 2 (19) 

 

Ȥ =  γ + 𝓂 = 2𝑘+1 − 3 (20) 

 

𝛼 = Ȥ + 𝒗ℎ−1 = 2𝑘+2 − 2𝑘−(ℎ−2) − 5 (21) 

 

𝑣ℎ = ⌈
𝛼

2
⌉ = 2𝑘+1 − 2𝑘−(ℎ−1) − 2 (22) 

 

The maximum value of the output 𝒫 is: 

 

𝒫 = 𝑣𝑘 = 2𝑘+1 − 4Therefore, the bit-length of the output 𝒫 is bounded on 𝑘 + 1 bits. 

 

 

Table 1. Bounds on the output of the proposed design 
ℎ 

 
𝑣ℎ−1 

< 2𝑘+1 

γ 

< 2𝑘 

Ȥ =  γ + 𝓂 

< 2𝑘+1 

𝛼 = Ȥ + 𝑣ℎ−1 

< 2𝑘+2 

𝑣ℎ = ⌈ 𝛼/2⌉ 
< 2𝑘+1 

1 0 2𝑘 − 2 2𝑘+1 − 3 2𝑘+1 − 3 2𝑘 − 1 

2  2𝑘 − 1 2𝑘 − 2 2𝑘+1 − 3 2𝑘+2 − 2𝑘 − 4 2𝑘+1 − 2𝑘−1 − 2 

3 2𝑘+1 − 2𝑘−1 − 2 2𝑘 − 2 2𝑘+1 − 3 2𝑘+2 − 2𝑘−1 − 5 2𝑘+1 − 2𝑘−2 − 2 

4 2𝑘+1 − 2𝑘−2 − 2 2𝑘 − 2 2𝑘+1 − 3 2𝑘+2 − 2𝑘−2 − 5 2𝑘+1 − 2𝑘−3 − 2 

5 2𝑘+1 − 2𝑘−3 − 2 2𝑘 − 2 2𝑘+1 − 3 2𝑘+2 − 2𝑘−3 − 5 2𝑘+1 − 2𝑘−4 − 2 

6 2𝑘+1 − 2𝑘−4 − 2 2𝑘 − 2 2𝑘+1 − 3 2𝑘+2 − 2𝑘−4 − 5 2𝑘+1 − 2𝑘−5 − 2 

7 2𝑘+1 − 2𝑘−5 − 2 2𝑘 − 2 2𝑘+1 − 3 2𝑘+2 − 2𝑘−5 − 5 2𝑘+1 − 2𝑘−6 − 2 

8 2𝑘+1 − 2𝑘−6 − 2 2𝑘 − 2 2𝑘+1 − 3 2𝑘+2 − 2𝑘−6 − 5 2𝑘+1 − 2𝑘−7 − 2 

 

 

4. RESULTS AND DISCUSSION 

The hardware architectures for MMM, existing and proposed method, has been presented in Sections 

2 and 3, respectively. This architecture of the proposed design has been implemented in VHDL. This work has 

been simulated and synthesized using ModelSim and Xilinx ISE tools respectively, where the target device is 

used Virtex-6 device XC6VLX760-2FF1760 FPGA.  

 

4.1.  Simulation of the proposed algorithm 

The simulation and verification of the design is carried out using ModelSim, Figure 2. As an 

example, 𝑘 = 8, 𝒜 = 165, ℬ = 231, and the modulus 𝓂 = 245. As expected, the final result is 𝒫 =
280,where, 𝒫 = 𝒜 ×  ℬ ×  2−𝑘  𝑚𝑜𝑑 𝑚 = 165 ∗ 231 ∗ 2−8 𝑚𝑜𝑑 245 = 280. The result is 𝑘 + 1 bits as a 

consequence of eradicating the final subtraction step.  
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Figure 2. Simulation of the proposed MMM 

 

 

4.2.  Implementation and comparison 

In this section, a comparison of state of the art 𝐺𝐹(𝑝) hardware Montgomery Modular Multiplication 

is presented. Table 2 shows that, the performance analysis of our work with existing designs. The metrics used 

to evaluate the proposed hardware designs for various bit-length are area in Slice LUTs, frequency in MHz, 

time in 𝜇𝑠, throughput in Mbps, Area-Time per bit-length (AT/b), and efficiency (Mbps per FPGA LUT). 

Efficiency metric has been used in previous works to evaluate the area resources used and performance 

achieved in cryptographic hardware architectures [19]. 

K. Javeed [14] presented a radix-2 implementation of the MMM and IMM algorithms on FPGA. The 

outcomes indicate that the radix-2 MMM design is more proficient in terms of calculation time, FPGA slice 

area and throughput as compared to the radix-2 IMM design. The synthesis results of implementation of MMM 

are shown in Table 2. [14] offers low computation time and reasonable throughput, but at the cost of higher 

area. Our proposed design has an advance on all aspects over the comparative one. Our work has achieved an 

improvement in efficiency by 61%, while consuming only about 40 % of the total slice-LUTs when compared 

with [14]. 

S. Ghosh [20] presented a modification of an interleaved multiplier using Montgomery ladder and the 

high-speed adder circuits. The design of [20] offers higher frequency and throughput for 256 and 224 bit-length. 

In contrast, this work consumes much higher area, a higher AT/b requirement, and lower efficiency. A comparison 

of the two works reveals that our proposed algorithm has achieved an advance in efficiency by an average 5.25 

times the efficiency of [20], whereas also consuming only around 19% of the total slice-LUTs. 

Based on interleaved multiplication algorithm; K. Javeed [21] presented a modified version of radix-

4 and radix-8 Booth encoded modular multipliers over general 𝐺𝐹(𝑝). Because of the utilization of higher 

radix approach; the design has a lower clock- cycles, and higher throughput for 224 and 256 bit-length. On the 

other hand, this approach utilized much hardware resources, a higher AT/b requirement, and lower efficiency. 

Our proposed algorithm has performed an improvement in efficiency by around seven-times the efficiency of 

[21], furthermore, consuming less than 13% of the total slice-LUTs. 

The previous works introduced the term “Normalized-LUT” to stand for DSP cost in the measure of 

LUT [11, 22, 23]. Yan [24] presented an Implementation of hybrid 256-bit Montgomery modular multiplier 

over GF (p) on FPGAs, which utilizes Karatsuba and Knuth multiplication algorithms in various stages. This 

work provided higher frequency and higher throughput over our proposed work. By contrast, the cost of 

utilizing the hardware resource utilization was very high, and the efficiency is very low. Our work has attained 

an enhancement in efficiency by 10.5 times the efficiency of [24], while consuming only 1.0% of the total 

slice-LUTs. 

Based on an interleaved multiplication algorithm and Montgomery power laddering, Javeed [25] 

presented an implementation of radix-4 modular multipliers. This work has a development in frequency, 

throughput over the previous work in [21] by twice. Nevertheless, our proposed algorithm has an advanced 

efficiency over algorithm in [25] by four- times, while consuming only 12% of the total slice-LUTs.  

Liu [11] proposed a design of 258-bit multiplier based on KO-3 algorithm construed from Karatsuba 

algorithm. This study has a perfection in time, and throughput over the proposed design, but at the cost of the much 

higher area, thus having a higher AT/b requirement and lower efficiency. Our work has attained an advance in 

efficiency by 2.7 times the efficiency of [11], while consuming only 0.33% of the total slice-LUTs. 

J. Ding [22] introduced Broken-Karatsuba multiplication with the non-least-positive form. Based on 

the modified modular multiplication algorithm, a 256-bit two-stage modular multiplier was built. This work 

accomplishes the computation of 256-bit MMM in just 9 cycles; thus, it has a perfect delay time, and a high 

throughput. On the other hand, the cost of the area is much higher, thus having a higher AT/b requirement and 

lower efficiency. Our work has attained an improvement in efficiency by 1.8 times the efficiency of [22], while 

consuming only 1.8% of the total slice-LUTs. 
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J. Ding [26] implemented Montgomery modular multiplication and utilized a modular multiplication 

approach based on non-least positive form (NLP) combining Karatsuba and schoolbook multiplication, which 

saves 2 base multiplications compared to Karatsuba-only designs. This work performs 256-bit MMM 

computation in just 16 cycles; hence, it has a reasonable delay time and a high throughput. By contrast, this 

work consumes much higher area, a higher requirement for AT / b and less efficiency. A comparison of the 

two works shows that our proposed algorithm has achieved an average efficiency advance of 1.1 times the 

efficiency of 3-way technique in [26], whereas only about 3.4% of the total slice-LUTs are consumed. 

 

 

Table 2. Comparison of modular multiplication implementations on FPGA 

 

 

5. CONCLUSION 

 This paper introduces a modular multiplier with a novel algorithm and compact architecture based 

on the MMM algorithm without any subtraction or multiplication procedures. The motivation behind this work, 

is to present a design of a lower area and higher efficiency than the relevant designs of MMM. This work has 

been implemented on Xilinx Virtex-6 FPGA platform, and verified by Modelsim simulator. The 

implementations of various bit lengths have been evaluated in terms of area, frequency, throughput, AT/b, and 

efficiency. The proposed multiplier performs a 256-bit and 1024-bit modular multiplication in 1.64 µs and 

19.92 µs, occupies 614 LUTs and 2408 LUTs, and runs at 156 MHz and 51 MHz, respectively. We can infer 

from the synthesized results that the proposed multiplier consumes the lowest area as compared with other 

multipliers. Consequently, the developed architecture has a competent area-time and enhanced efficiency. 

Thus, the developed architecture is a very adequate to be applied for efficient lightweight asymmetric 

cryptosystems.  
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