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 In this article, we give a new modification for the Dai-Liao method to solve 
monotonous nonlinear problems. In our modification, we relied on two 
important procedures, one of them was the projection method and the second 

was the method of damping the quasi-Newton condition. The new approach 
of derivation yields two new parameters for the conjugated gradient direction 
which, through some conditions, we have demonstrated the sufficient descent 
property for them. Under some necessary conditions, the new approach 
achieved global convergence property. Numerical results show how efficient 
the new approach is when compared with basic similar classic methods. 
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1. INTRODUCTION  

The issue in this article is the assumption of finding the vector value x   , i.e. as in: 
 

             ( )    (1) 
 

When           is continuous and monotonous and satisfy ( ( )   ( ))
 
(   )     . Methods for 

solving this type of problem vary when they are not restricted to Newton's method and quasi-Newton methods, and 

they are preferred due to the convergence of their local lines to the second and local levels. When dealing with large-

scale nonlinear equations, the so-called Conjugate Gradient (CG) method of all kinds is effective [1-8]. Applications 
and innovations continue around these technologies to this day [9-11]. The monotonic equations arose in several 

different practical situations for example see [12]. The most important advantage of CG-methods is that the direction 

of the search does not require the calculation of the Jacobin matrix which leads to low math requirements on each 

iteration. Likewise, when these methods overlap with the projection technique proposed by Solodov and Svaiter [13] 

to solve large-scale nonlinear equations and constrained nonlinear equations that some researchers have expanded as 

in [14-19]. Recently, many researchers have presented articles on how to find the solution to both constrained and 

unconstrained monotones (1) and give them a lot of attention [20-27]. Include the idea of projection that needs to be 

accelerated using a monotonous case F by monotony F and letting           , the hyperplane:  
 

H *    | (  )
 (    )   + . 
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Separates strictly    from the solution set of (2). Through [13] where the next iteration      to be the 

projection of    onto the hyperplane   . So,      can be evaluated as: 

 

       ,      (  )-     
 (  )

 (    ) (  )

‖ (  )‖
  (2) 

 

                                 
 (  )

 (     )

‖ (  )‖
 ” 

 

This paper is organized as follows: In Section 2, we describe the proposed new procedure. Section 3 

derived the penalty parameters. Global convergence has been demonstrated in Section 4. For Section 5 we 

list numerical experiments in it. 

 

 

2. OPTIMAL DAMPED DAI-LIAO  

The researchers gave Dai and Liao [28] a parameter worthy of updating to this time because of its ability 

to reach global convergence through the properties of parameter t, which could set us some failures resulting from 

the deviation of the search direction of its path to reach the smallest point of the function, such that: 

 

  
   

    
 (       )

  
   

 (3) 

 

Later Liu and Li modified (3) by using the projection technique in their formula [29]. The researcher 

Fatemi [30] presented a precise method in deriving the conjugate gradient parameter    by setting 

conditions on it (the condition of orthogonality and conjugation) and through the penalty function the results 

of the derivation were largely appropriate in developing a formula for the Dai-Liao parameter and the 

positive value of t. In this section, we present an improved method for deriving a parameter    . That is: 
 

 ( )           
   

 

 
        

 

And take   (        ), the gradient of the model in     , as an estimation of     . It is easy to 

see that: 

 

  (        )                 (4) 
 

Unfortunately,      in (4) is not available in the current iteration, because      is unknown. Thus, 

we modified (4), and set  

 

                  (5) 

 

Where t>0 is suitable approximation of       If the search direction of CG-method such that 

 

                (6) 
 

An efficient nonlinear CG-method, we introduce the following optimization problem based on the 

penalty function: 

 

     
,    

       ∑ ,(    
     )

  (    
     )

 - 
   - (7) 

 

Now, substituting (5) and (6) in (7), and use the projection technique we obtain: 
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After some algebraic abbreviations, we get the following formula 

 

   
 

 
,     

      ∑    
       

     

 

   

     ∑    
           

         

 

   

 

                                           ∑     
     

 
     

         - (8) 

 

Where        ∑ (  
         )

  
      ∑ (  

     )
  

    

 

To get a new parameter we consider the following assumption as the hessian approximation      

satisfies the extended damped quasi-Newton equation and with the incorporation of the use of projection 

technology we get: 

 

          
 

  
(       (    )      )  

 

  
    

   ̅   
  (9) 

 

Where 

 

   {
                                                                  

          
       

      
       

    
            

     
                                  

          
       

 (10) 

 

And    is the projection step. We get 
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So, there are two possible scenarios for this parameter such that: 

 

Case I:  if     
          

        then      and  ̅   
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 (11) 

 

It is interesting to investigate the method when    approaches infinity, because by making this 

coefficient larger, we penalize the conjugacy condition and the orthogonality property violations more 

severely, thereby forcing the minimizer of (7) closer to that of linear conjugate gradient method. We obtain 

 

  
     

∑     
       

     
 
   

∑ (  
     )

  
   

 
   

(    )
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∑ (  
     )

  
   

 (12) 

 

We notice from the previous equation that it belongs to the parameter class for Dai-Liao and that's 

exactly when setting m=0 we have 
 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 21, No. 1, January 2021 :  505 - 515 

508 

  
     

    
   

  
   

 
   

(    )

    
   

  
   

 
      

   

   ( 
   )  

   
 (13a) 

 

  
     

    
   

  
   

 
   

(    ) 

    
   

  
   

 (13b) 

 
When compared to the parameter Dai-Liao, we notice that the value is 
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Case II: if     
          

        then  ̅   
  

    
 

  
 from equation (9) and         by projection technique, 

m=0 to convert the   
    form to 
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If we substituting equation (9) in (15) and using algebraic simplifications, we obtain the formula: 
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i.e.    (  (  
   

 )    
 (  

   )
 ) 
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As we talked about (  ) then (  ) when you come close to infinity, then we use the parameter omitted from 

this limit: 

 

           
     

 

  
(,      

          
   -  

  
   

  
   

,      
          

   -) (16b) 

 

 to obtain better results as in Section 5. 
 

 

3. DERIVING THE PENALTY PARAMETER 

The derivation will be according to the two new parameters defined in (13) and (16), which we will 

be updated by achieving the condition of a sufficient descent direction for the CG-method as shown below: 

 

3.1.  Lemma 

Assume that the generated method (13) with line search, then for a few positive scalars           

satisfying        , we have: 

 

    
       (       )‖    ‖

  (17) 

 

When  

 

|     |  √
    (  

   )

‖  ‖
  (18) 

 

   
    ‖    ‖

  

(    ) ‖(           )
     ‖

  ;         is a scalar. (19) 

 
Proof: 

We have used (2) and (13) that: 
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Now, using the following inequality: 
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Where x, y and    are positive scalars, we have: 
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By Cauchy-Schwarz inequality implies: 
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Since t is an approximation of the step size, we use the following updated formula: 
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Now the proof is completed. 
 

3.2.  Lemma 

Assume that the newly generated method (16) with line search, then for a few positive scalars 

                satisfying              , we have: 
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Proof: 

We substituting (16) in (6) and multiplying by      that: 
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By following the same steps in Lemma 3.1 we get: 
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By Cauchy-Schwarz inequality implies: 
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The proof is completed. 
 

3.3.  Algorithm (PDL-CG) [29] 

Given                (   ), stop test    , set    . 

Step1:  Evaluate  (  ) and test if ‖ (  )‖    stop, else go to Step 3. 

Step2: Generate the search direction    by (6) and here   
    

    
   

  
   

  ‖  ‖
     

   

  
   

;       

                                  (   
  
   

  
   

)  Stop if        

Step3: Set           , where the step-size        (   |          ) is determined by the line 

             search   (       )
       ‖  ‖

  

Step4: If       and ‖ (  )‖    stop, else compute the next point      from Step (2). 

Step5: Let       and go to Step 1. 
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3.4.  New Algorithm (NDDL-CG). 

Step1: Given              (   ), stop test    , set    . 

Step2: Evaluate  (  ) and test if ‖ (  )‖    stop, else go to Step 3. 

Step3: When   
      

    compute     from (19) and if      then   
     from (13a) else from (13b). 

Step4: When   
      

    compute     from (25) and if      then   
     from (16a) else from (16b). 

Step5: Compute    by (6) and stop if        
Step6: Set           , where       with   being the smallest positive integer m such that: 

  .   
  

 
  /

 

    
  

 
‖  ‖

   

Step7: If       and ‖ (  )‖    stop, else compute the next point      from (2). 

Step8: Let       and go to Step1. 

 

 

4. GLOBAL CONVERGENCE 

In the previous section, we gave a preface to the proof of convergence condition by establishing the 

property of sufficient descent through Lemmas 3.1 and 3.2. Now we need some assumption, to begin with, 

the proof of convergence condition, which is illustrated thus: 

 

4.1.  Assumption 

Suppose   fulfills the following assumptions: 

a) The solution group of (2) is non-empty. 

b) The function   is Lipschitz continuous, i.e., there exists a positive constant L such that: 
 

‖ ( )   ( )‖   ‖   ‖           (26) 
 

c)   is uniformly monotone, that is, 
 

〈 ( )   ( )    〉   ‖   ‖             c>0 (27) 
 

4.2.  Lemma [13] 

assume  ( ̅    ) satisfy  ( ̅)    and * + is generated by the new algorithm (NDDL-CG) that check 

Lemmas 3.1 and 3.2, then ‖      ̅‖  ‖    ̅‖  ‖       ‖
  . Specifically, it is * + bounded and  

 

∑ ‖       ‖
 
      (28) 

 

4.3.  Lemma 

Suppose * + is generated by the new algorithm (NDDL-CG) then 
 

        ‖  ‖    (29) 

 

Proof: 

The sequence *‖    ̅‖+ not increasing, converging, and thus constrained. As well, *  + is bounded 

and       ‖       ‖   . From (2) and used a line search, we have:  
 

‖       ‖  
| (  )

 (    )|

‖ (  )‖
 

‖ (  )‖  
|   (  )

   |

‖ (  )‖
    ‖  ‖    

 

Then the proof is completed. 

 

4.4.  Theorem.  

Let *  + and *  + be the sequences generated by the new algorithm (NDDL-CG) then 
 

           ‖ (  )‖     (30) 
 

Proof:  

Case I: If         ‖  ‖     , we have            ‖ (  )‖   . We use the continuity of  , the 

sequence *  + has some accumulation point  ̅ such that  ( ̅)     Since *‖    ̅‖+ converges and  ̅ is an 

accumulation point of *  +  it follows that converges to  ̅  
 

Case II: If         ‖  ‖     , we have            ‖ (  )‖   . By (29), it holds that           . 

Using the line search: 
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and the boundedness of *  + *  +  we can choose a subsequence such that allowing k to go to infinity in the 

above inequality results 

 

  ( ̅)  ̌    (31) 

 
On the other hand, from (17) and (23) we get  

 

  ( ̅)  ̌     ‖ ( ̅)‖
    (32) 

 

For i=1 and 2. It is through (31) and (32) indicates a contradiction. So, it is            ‖ (  )‖    

does not hold and the proof is complete. 

  

 

4. RESULTS AND EXPLANATIONS 

In this section, we present several results that explain the importance of the new algorithm (NDDL-

CG) compared to the standard Dai-Liao (PDL-CG) algorithm [20] using Matlab R2018b program in a laptop 

calculator with its CoreTMi5 specifications. The program finds the results on several non-derivative functions 
through several primary points indicated asshown in Table 1. 

 

 

Table 1. Number of initial points 
Name of Variable Number  
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   (              )  
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These algorithms are implemented for dimensions n (1000, 2000, 5000, 7000, 12000). The stopping scale is 
‖ (  )‖      . These algorithms are distinguished by their performance in (Iter): number of iterations, 

(Eval-F): number of function evaluations, (Time): CPU time in second and (Norm): the norm of 

approximation solution. The test problems are  ( )  (             )
  where 

  (             )
 ,                          

  Information of test functions as shown in Table 2. 
Winner w.r.t. number of iterations, FVAL, TIME and NORM as shown in Table 3, according to all 

the initial points that we chose, shows the number of times the new algorithm has succeeded (NDDL-CG) 
versus each other against (PDL-CG) by relying on the number of iterations and on the number of times the 

goal function is calculated and on the time taken for each implementation In addition to the base value. As 

for Table 4, it represents the total implementation results of the (new (NDDL-CG) and old (PDL-CG)) 

algorithms) for each starting point of the initial five points. 

 

 

Table 2. Information of test functions [31-36] 
Name of Functions Details Reference  
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Name of Functions Details Reference  
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Table3. Winner w.r.t. number of iterations, FVAL, TIME and NORM 
Name of Variable PDL-CG 

ITER / FVAL / TIME / NORM 

NDDL-CG 

ITER / FVAL / TIME / NORM 

   35 / 35 / 24 / 26 25 / 25 / 36 / 34 

   21 / 21 / 19 / 25 39 / 39 / 41 / 35 

   15 / 15 / 11 / 18 25 / 25 / 37 / 22 

   15 / 15 / 11 / 16 10 / 10 / 14 / 9 

   15 / 11 / 3 / 20 25 / 29 / 37 / 20 

Total 101 / 97 / 68 / 105 124 / 128 / 165 /120 

 

 

Table4. Total of functions for each initial points 
Name of Variable PDL-CG 

ITER / FVAL / TIME / NORM 

NDDL-CG 

ITER / FVAL / TIME / NORM 

   1658 / 3612 / 1431.865 / 2.96E-07 431 / 1136 / 931.698 / 1.26E-07 

   1758 / 3611 / 2441.866 / 2.96E-07 382 / 990 / 835.6486 / 1.11E-07 

   1201 / 2607 / 1583.853 / 1.52E-07 307 / 945 / 681.346 / 9.7E-08 

   135 / 680 / 1196.513 / 2.63E-08 74 / 173 / 347.9768 / 1.65E-08 

   1678 / 4987 / 2678.288 / 1.89E-07 226 / 652 / 458.5485 / 7.13E-08 

Total 6430 / 15497 / 9332.385 / 9.59E-07 1420 / 3896 / 3255.2179 / 4.22E-07 

 

 

Using Dolan and Mor´e [37] style, the following three figures are also for comparison between the 

two algorithms concerning the number of iterations, the number of times the function is calculated and the 

time is taken, which we calculated for the point   , Figure 1 shows the effect of the number of iterations on 

the two algorithms when switching and increasing dimensions. As for Figure 2, it is clear that the new 

algorithm is based on calculating the number of times the target function is better. Figure 3 shows the amount 

of time spent on the algorithms used in this work. As a conclusion, the figure shows us that the new 

algorithm is more efficient when compared to the old algorithm. 

 
 

 
 

Figure 1. Performance of the two algorithms  
w.r.t. (Iter) 

 

 

 
 

Figure 2. Performance of the two algorithms  

w.r.t. (Eval-F) 
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Figure 3. Performing the two algorithms w.r.t. (TIME) 

 

 

5. CONCLUSION 

From the results we conclude that the new algorithm (NDDL-CG) is more efficient than the old 

algorithm (PDL-CG) using most of the initial values when comparing its performance in changing 

dimensions. We also notice through the three drawings presented in the evaluation of previous results that the 
efficiency of the new algorithm increases with the increase in the number of dimensions and stability appears 

in some of the relevant results by calculating the goal function, and therefore the addition to the new 

algorithm (which contains the parameter of the penalty function) makes the new algorithm more appropriate 

than the algorithms Others are in the same field of work. 
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