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Abstract 
In this paper, synchronization between two Rössler Chaotic Systems with impulsively controlling 

is established by using the criteria on uniform equi-boundedness and equi-Lagrange stability for impulsive 
systems. After several theoretical derivations, some simulation results are given to demonstrate our 
results. 
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1. Introduction 
Impulsive differential equations have been gained considerable attention in science and 

engineering (eg. [1] - [3]) in recent years, since they provide a natural framework for 
mathematical modeling of many physical phenomena. Recently, impulsive control, which is 
based on the theory of impulsive differential equations, has been gained renewed interests for 
controlling chaotic systems. 

The study of impulsive synchronization of two identical chaotic systems is one of the 
most important applications of impulsive control. In [4] and [5], two autonomous chaotic 
systems, the drive system and the driven system, have been considered for impulsive 
synchronization. Further detailed analysis of impulsive control and impulsive synchronization of 
chaotic systems are presented, e.g.  in [6] - [9] etc.  

A number of robust communication systems employing the two types of synchronization 
have been developed in [10]. It has been shown that impulsive synchronization systems may be 
combined with conventional cryptographic techniques [11] to achieve the two desired properties 
of increasing the complexity and reducing the redundancy of the transmitted signals. It has been 
further established that impulsive synchronization achieves efficient bandwidth utilization. 
However, the proposed impulsive synchronization systems suffer from the transmission time-
frame congestion [12]. In [13], a promising application of impulsive synchronization of chaotic 
systems to a secure communication scheme was presented. In this paper, we will use the 
method introduced in [13] to establish the synchronization between two Rössler Chaotic 
Systems. 
 
 
2. Preliminaries  

In this section, we present some sufficient preliminaries from [13] for our main results. 
To facilitate our discussion, it is convenient to introduce the notations as follows, where 0M : 

 

0 : { [ , ] : ( ) 0 if 0 and  (0) 0}g C g s s g      � �  

0: { : ( ) is strictly increasing}g g s    

: { : lim ( ) }sg g s        

1: { : : ( ) (( , ]) and ( ) exists, 1, 2,...}k k kPC p p t C t t p t k
     � �  

( ) : { :|| || }c nS M x x M  �  
0( ) : { :|| || }c nS M x x M  �  



                       ISSN: 2302-4046 

TELKOMNIKA Vol. 11, No. 5, May 2013 : 2559 – 2565 

2560

0 1( ) : { : ( ) : ( , ) (( , ] ( )) | locally Lipschitz in

and ( , ) exists for 1,2,...}

c c
k k

k

v M V S M V t x C t t S M x

V t x k

  



    



� �
 

 
Impulsive differential equations are usually defined as an ordinary differential equation 

coupled with a difference equation, as expressed in the following: 
 

( , )

( , )
k

k

x f t x t t

x I t x t t

 
  


 (1) 

 
where ( ) ( ) ( )k k kx t x t x t    , ( ) lim ( )

k
k t t

x t x t



 , ( ) lim ( )

k
k t t

x t x t



 , and the moments of 

impulse satisfy 1 20 kt t t       and limk kt   . Let f , I : n n
  � � �  be continuous 

on 1( , ] n
k kt t   � and ( , )kf t x , ( , )kI t x  exist for each 1, 2k   . This guarantees that, for each 

0 0( , ) nt x  � � , there exists a local solution of (1) satisfying the initial condition 0 0( )x t x  . Let 

0 0( ) : ( , , )x t x t t x  be any solution of (1) satisfying 0 0( )x t x   and ( )x t  be left continuous at each 

0kt t  in its interval of existence, i.e. ( ) ( )k kx t x t  . Then we have the following definitions. 

 
Definition 1: Solutions of the impulsive system (1) are said to be 
(S1) equi-attractive in the large if for each 0  , 0   and 0t � , there exists a number 

0: ( , , ) 0T T t     such that 0|| ||x   implies || ( ) ||x t  , for 0t t T  ; 

(S2) uniformly equi-attractive in the large if T in (S1) is independent of 0t . 

 
Definition 2: Solutions of the impulsive system (1) are said to be 
(B1) equi-bounded if for each 0  , 0t � , there exists a constant 0: ( , ) 0t     such that 

0|| ||x   implies that || ( ) ||x t  , for 0t t ; 

(B2)  uniformly equi-bounded if   in (B1) is independent of 0t ; 

(B3)  equi-Lagrange stable if (S1) and (B1) hold together; 
(B4)  uniformly equi-Lagrange stable if  (S2) and (B2) hold together. 
Now we shall need the following results [13]. 
 
Lemma 1:  The solution of  (1)  are uniformly equi-bounded if 
(a) 0 ( )V v M , for some 0M   and there exist functions ,a b    such 

that (|| ||) ( , ) (|| ||)b x V t x a x  , ( , ) ( )ct x S M � , 

(b)  there exist functions p PC  and 0kc   such that  

 
( , ) ( ) ( ( , ))kD V t x p t c V t x   (2) 

 
0

1( , ) ( , ) ( )c
k kt x t t S M   for 1, 2,k   , 

(c)  there exists a constant 0N   such that if || ( ) ||kx t M , then || ( , ) ||kx I t x N  , for 1, 2,...k  , 

(d)  there exist functions k    and 0k   such that ( ) ( )ks s s   , s  �  and 

 
( , ( , )) ( ( , ))k k k kV t x I t x V t x    (3) 

 
whenever ( , )kt x , 0( , ( , )) ( )c

k kt x I t x S M  � , for 1, 2,...k   

(e)  there exist constants 0   and 0k   such that 

 
1 ( )

( )
( )

k k

k

t y

kt y
k

ds
p s ds

c s


      (4) 

 



TELKOMNIKA  ISSN: 2302-4046  

Impulsive Control and Synchronization of Rössler Chaotic System (Yan Yan) 

2561

where y  , 1, 2,...k  . 

 
Lemma 2:  The solution of  (1)  are equi-Lagrange stable if  
(a) (1) is equi-bounded; 
(b) Condition (b) of lemma 1 holds for 0 (0)V v  with inequality (2) being true for all 

( , ) nt x  � � ; 

(c) There exist functions 0k    such that inequality (3) holds, for all ( , ) nt x  � �  and for all 

1, 2,k   ; 

(d) There exists a constant 0   and functions kC   such that ( ) ( )k kC s c s , for all s  �  

and for all 1, 2,k    ; 

(e) (4) holds, for all 0y   and 
1

k
k






  . 

 
 

3. Synchronization of Rössler chaotic system 
In this section, we will show that two Rössler chaotic systems can be synchronized by 

impulsive control. The Rössler chaotic system is described by the following differential equation: 
 

1 2 3

2 1 2

3 3 1

( )

( )

x x x

x x ax

x b x x c

  
  
   







 (5) 

 
where , ,a b c  are positive parameter. When we choose the parameters 

0.2, 0.2, 5.7a b c   , and the initial condition 1 2 3( (0), (0), (0)) (0.1,0.1,0.1)T Tx x x  , then system 

(5) has an notable Rössler attractor, as shown in Figure 1. 
 
 

 
 

Figure 1.  Rössler attractor 
 
 
System (5) can be rewritten into the following form as our first driving system: 
 

( )A g x x x  (6) 

 
where 1 2 3( , , )Tx x xx  is state variable, and  
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0 1 1

1 0

0 0

A a

c

  
   
  

,    

1 3

0

( ) 0g

x x b

 
   
  

x . 

 
The second driving system is the derivative of the Rössler chaotic system give by (6), 

which is expressed by 
 

1 3 3 1

0

0A

x x x x

 
    
  

x x 

 

 (7) 

 
Let the first driven Rössler chaotic system be 
 

1 3

0

0 k

k k

A t t

u u b

B t t

  
         
   

u u

u e


 (8) 

 
where kB  are n n constant matrices, for all 1, 2,....k   and e = x - u . The second driven 

system is the derivative of the first driven system and is given by 
 

1 3 3 1

0

0 k

k k

A t t

u u u u

B t t

  
      
   
   

u u

u e

 

 



 (9) 

 
where e = x - u  . With (6)-(9), the error dynamics e  and e  can be expressed as 
 

1 3 1 3

0

0 k

k k

A t t

x x u u

B t t

  
         
  

e e

e e


 (10) 

 
and 
 
 

1 3 1 3 1 3 3 1

0

0A

x x x x u u u u

 
    
    

e e 

  

 (11) 

 
Now we have the following theorem. 

 
Theorem 1. System (11) is uniformly equi-bounded if the largest eigenvalue of ( )( )T

k kI B I B  , 

denoted by k , satisfies 

 
exp{ 2 }k k    (12) 

 



TELKOMNIKA  ISSN: 2302-4046  

Impulsive Control and Synchronization of Rössler Chaotic System (Yan Yan) 

2563

for all 1, 2,...k  and for || ( ) ||ke t , || ( ) ( ) ||k k ke t B e t M    for some 0M  , where ( , )e e e  , 

1: (1 2)[ ]k k k      , 0k   are constants and 1{ }k k 
 has an upper bound, 

10 inf ( )k k k    �  , 1: 0k k kt t r     , for all 2,3,...k   and 1 3 1: 2 | | | | | |L d x u x     , 

where d  is the largest eigenvalue of : TQ A A  . Moreover, if 1
k k   , for all 1, 2,...,k   and for 

all || ( ) || 0ke t  , then (11) is uniformly equi-Lagrange stable. 

 
Proof: To prove the result, we will prove that (11) satisfies all the conditions described by 
Lemma 2.  Let : sup ( )k kB  , and 2( , ) : ( ) || ||TV t e V e e e e       . Choose 2(|| ||) (|| ||) || ||b e a e e    . The 

Upper-right derivative of V  is given by 
 

2
1 3 1 3 1 3 3 1 3

( )

( , )( , ) ( , )( , )

2 || || ( ) 2( )

T T

T T T T T T

T T T T

T T

D V e e e e e

e e e e e e e e

e e e e e e e e

L e e A A e x x x x u u u u e

  

 

   

      

     

    

    

     

 

 
where 2|| ||Te e L e ,  for some 0L  , which follows form (10). Note that 

( )T T Te A A e de e     , where d  is the largest eigenvalue of  TA A , and 

1 3 1 3 1 3 3 1 3

1 3 1 3 1 3 3 1 3

1 3 3 3 1 1 1 3 3 3 1 1 3

1 3 3 1 1 3 3 1 3

2
1 3 1 3

( )

| | | |

| ( ) ( ) ( ) ( ) | | |

| | | |

1
(| | | | | | | |) || ||

2

x x x x u u u u e

x x x x u u u u e

x x u u x u x x u u x u e

x e u e x e u e e

x u x u e

  

    

        

    

   

   

   

     

   

 

 

Thus, we can conclude that 
2

1 3 1 3 1 3 3 1 3

1 3 1 3

( ) (2 ) || || 2( )

(2 | | | | | | | |) ( )

D V e L d e x x x x u u u u e

L d x u x u V e

      

     

     

 
, 

 
Set   1 3 1 1: 2 | | | | | | | |p t L d x u x u       and ( ) :c s s . Clearly, p PC  and c  . Thus, 

conditions (a), (b) of Lemma 1 are satisfied over n
 � � . If || ( ) || , 1, 2,...,ke t M k   then, by 

inequality (12), we have 
|| ( ) ( ) || || || || ( ) ||

exp( )

exp( ) :

k k k k k

k

e t B e t I B e t

M

M N




  

 
  

  

 

for 1, 2,...,k   and thus, condition (c) of Lemma1 is also satisfied. 

    Define the mapping ( ) : exp( 2 )k ks s    for all 0s  . Clearly, ( )k s s  , for all 0s    

and ( ) (1 2)exp( 2 ) : ( )k s B s s      for all 0s  . i.e. ( ) ( )ks s s    . Furthermore, by inequality 

(12), for || ( ) ( ) ||k k ke t B e t M   ,  1, 2,...,k   we have 

2

( ( ) ( ) ( ( ) ( )) ( ( ) ( ))

( )( )( ) ( )

( ) ( )

exp( 2 ) || ( ) ||

( ( ( )))

T
k k k k k k k k k

T T
k k k k

T
k k k

k k

k k

V e t B e t e t B e t e t B e t

e t I B I B e t

e t e t

e t

V e t





    

  



 
 

     

 

 





 

This implies that condition (d) of Lemma 1 is satisfied. In addition, it is easy to check 
that 
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ln( )
ds

s
s
 . 

 
 It follows that, for  1, 2,...k   

1 ( )

1

( )
( ) ln

2

k k

k

t y
k

kt y

k

k

yds
p s ds

s y

 


 




   

  

 

  

. 

 
Thus, condition (e) of Lemma 1 is also satisfied. Therefore we conclude that (11) is 

uniformly equi-bounded as desired. This implies, by choosing 1
k k  , for all 1, 2,...,k   and 

applying Lemma 1 and Lemma 2, that solution to system (11) are also equi-Lagrange stable, as 
desired. 
 
 
4. Numerical Simulation 

In this section, we shall discuss an example to illustrate our main results. We take  
0.2, 0.2, 5.7a b c   , 

(0.2,0.2,0.2)kB B diag   , 

0.002K    , 

1 2 3( (0), (0), (0)) (1.5, 1.7,1.8)x x x   , 

1 2 3( (0), (0), (0)) (1.2,1.5,1.7)x x x    , 

1 2 3( (0), (0), (0)) (1.46, 1.87, 2.5)u u u   , 

1 2 3( (0), (0), (0)) (3.9,1.74, 1.62)u u u     . 

 
Then all conditions of Theorem 1 are satisfied and Figure 2 represents the simulation 

results which shows that the impulsive control synchronization is realized. 
 
 

 
 

Figure 2.  Uniform equi-Lagrange stability of system (11) 
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