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 This paper proposes a new spectral conjugate gradient (SCG) approach for 
solving unregulated nonlinear optimization problems. Our approach proposes 

Using Wolfe's rapid line scan to adjust the standard conjugate descent (CD) 
algorithm. A new spectral parameter is a mixture of new gradient and old 
search path. The path provided by the modified method provides a path of 
descent for the solution of objective functions. The updated method fits the 
traditional CD method if the line check is correct. The stability and global 
convergence properties of the current new SCG are technically obtained from 
applying certain well-known and recent mild assumptions. We test our 
approach with eight recently published CD and SCG methods on 55 
optimization research issues from the CUTE library. The suggested and all 

other algorithms included in our experimental research were implemented in 
FORTRAN language with double precision arithmetic and all experiments 
were conducted on a PC with 8 GB ram Processor Intel Core i7. The results 
indicate that our proposed solution outperforms recently reported algorithms 
by processing and performing fewer iterations in a shorter time.  
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1. INTRODUCTION 

The mathematical model for the optimization algorithm can be used to find a solution to such 

problems. For some problems, an exact solution cannot be calculated directly. Instead, suitable algorithms 

must be chosen that will approximate the solution as closely as required to the optimal solution. We consider 

the problem of optimization:  

 

 ,)(min nRxxf 
 (1) 

 

where 
RRf n :

 Continuously separated feature. Nonlinear conjugate gradient (CG) algorithms are 
useful in solving nonlinear optimization problems formulated in (1). Such algorithmic improvements are 

demonstrated by: 

 

11   kkkk dxx 
, 

,...1,0k
 (2) 
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Where's the latest version kx
, 

0k . The Wolfe line search method determines the next search 
path, denotes the gradient at, and is an appropriate parameter (also called the conjugacy function). CG was 

initially suggested by Hestenes and Stiefel in the 1950s [1] as an exact way to solve symmetric, strong, 

definite linear algebraic structures. In 1964, Fletcher and Reeves [2] expanded the scope of CG approaches to 

non-linear problems. 
The main advantages of the CG methods are their low memory requirements, its convergence speed 

and its satisfaction of a quadratic termination property in which the method can locate the minimizer of a 

quadratic function in a finite number of iterations, see, for example, Hassan [3, 4] yet which can be applied 

iteratively to minimizing non-quadratic functions. This family of algorithms was proposed on the conjugacy 

parameter k  in previous studies. Most well-known formulas were defined such as: Polak and Ribière (PR) 

[5], Fletcher (CD) [6]. Observe that in these algorithms the scalar k can be calculated by Wolfe [7] and: 
 

k

T

kk

T

kkk

k

T

kkkkkk

dgddxg

dgxfdxf
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 (4) 
 

10     

The strong Wolfe conditions may not yield a direction of descent unless 
21

. Inequality given 

in (4) is sometimes called the Armijo condition. Hager and Zhang [8] were proposed a CG method (HZ) That 

corresponds to the following upgrade parameter where 
.

 denotes the Euclidean norm of vectors:  
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here, 
0

 is a constant. In this research, we proposed a fast-spectral CG approach to solve unconstrained 

nonlinear optimization issues. We plan to investigate the stability and global convergence properties of the 

proposed algorithm and perform some practical computational tests to demonstrate its efficiency suitable for 

solving certain nonlinear optimization problems with the well-known Powell restart criterion [9]. The 

remainder is organized into four sections. Section 2 explains earlier studies of spectral CG methods. Section 

3 outlines our proposed method. Section 4 contains tests, results, and discussion. Section 5 contains the final 
remarks. 

 

 

2. LITERATURE REVIEW ON SPECTRAL CONJUGATE GRADIENT METHODS 

Spectral CG (SCG) methods are a common CG approach for problem-solving(1). It was originally 

developed by Barzilai and Borwein and later studied by several authors [10-14]. Below is the general SCG 

process system. 
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Algorithm (SCG) 

Step1: Choose 
nRx 0  and the parameter 10   . Compute )( 0xf  and set 00 gd    

Step2: Compute k  from Wolfe conditions using (5). 

Step3: If kg , then stop; otherwise continue. 

Step4: If 
2

1 2.0 kk

T

k ggg   is met, restart step by step by 0g  direction; otherwise proceed. 

Step5: Compute the parameter k , corresponding to different studies in this field.  

Step6: Compute the parameter k from the standard CG method 

Step7: Calculate the new search path 1 kkkkk dgd  . 

Step8: Set the iteration k=k+1 and go to Step2. 

 

During the last decade, much effort has been devoted to developing new SCG methods. One of the 

old studies in this field is proposed by Raydan (R) [15]. Al-Bayati and Abdullah (BA) [16] introduced a new 

class of SCG methods of unconstrained large-scale optimization problems using both spectral and scaling 

properties for their search paths. i.e.  
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Al-Bayati and Hassan (BH) [17] investigated another SCG method to solve unconstrained 

optimization problems.  
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Liu and Jiang (LJ) [18] proposed minor modification of the CD method so that the search directions 

produced are always downward. A mixed spectral method (LDW) is proposed by Liu, et al. [19] for solving 

some nonlinear optimization problems.  
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Livieris and Pintelas (LP) [20] suggested another type of SCG method providing sufficient descent 

directions, regardless of quality line search and global convergence property for general functions, given the 

line search technique meets Wolfe requirements. Another novel SCG method was proposed by Al-Bayati and 

Al-Khayat (BK) [21] in this field. They tried to construct a descent direction. 
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Ghanbari (GAAA) suggested an important nonlinear SCG approach for solving optimization 

problems [22]. Their system is based on a hybrid spectral HS-CG system combining the advantages of 

spectral HS process with CD method. Recently, a new SCG method (LZX) was proposed by Hang et al. [23].  
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3. A FAST SPECTRAL CONJUGATE GRADIENT METHOD 

We are focusing on a modern SCG-method to address unconstrained nonlinear optimization 

problems. Our approach reduces line search to conventional CD-method. We have shown that while the 

objective function is non-convex, the proposed Wolfe line search approach is globally convergent. To 

evaluate the descent directions for the new SCG process, let the current iterate be defined by:  
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 (11) 

 

where 
CD

k  is specified by (4d) with the following fast spectral parameter defined in (11) and the unknown 

parameter k  is defined by:  
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 (12) 

 

This new approach was designed to solve a variety of complicated nonlinear unconstrained 

optimization issues that are reduced to the classical CD approach if the line search is successful. For better 

results, we use Wolfe's inaccurate line search. In this algorithm, we must first prove it's an appropriate 

downward path. 
 

3.1.   Lemma 

Suppose that the new search direction 
New

kd
 which is defined by (11) and (12) and assume that k

 

satisfies the condition (5) with 
5.0k

. Then:  
 

2

1 kk

T

k gcdg 
 (13) 

 

holds for any 0k .  
 

Proof. For initial k; k=0, we have  

 
2

000 ggd T 
 (14) 

 

We presume condition (13) refers to all k-1 values; i.e.  
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Then we can show the condition (13) is true for all k values, i.e. 
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From the (4d); (11) and (12): 
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From second Wolfe condition defined in (5), we have: 
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Therefore, using (19) and (18) becomes: 
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Hence: 
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This implies: 
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Thus, (13) is satisfied, the Lemma is true. 

In Lemma 3.1, by using an exact line search, dk is f at xk and: 
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and the proposed new form is reduced to the CD.  

 

3.2.   Wolfe's accelerated line search 

In this section, we find an acceleration scheme in [4]. The latest calculation of the minimum point is 

estimated as follows: 

 

kkkkk dxx 1  (24) 
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Compute spectral parameters k
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 (25) 

 

If 
0kb

, then compute kkk ba /
 and (24),  

 

Otherwise, update kkkk dxx 1   
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3.3.   Outline of the new proposed algorithm 

Step 1: Take 
nRx 0  ; set the parameters 10   ; eps are the small positive number. 

Compute
 

)( 0xf  and )( 00 xfg 
; 

set 00 gd   for 0k . 

Step 2: Compute Wolfe conditions parameter k  using (5). 

Compute, )(, zfgggy zzkk  . 

Acceleration scheme: compute, k

T

kkkk

T

kkk dybdga   , ,  

If 0kb , then  

Calculate, )/( kkk ba  and  

Find the new factor as kkkkk dxx 1   

Else 

Find the new factor as kkkk dxx 1  

Step 3: If epsgk 
  

it is satisfied then stop; otherwise continue. 

Step 4: If Powell restart requirement 
2

1 2.0 kk

T

k ggg   is met, restart step by step by 

0g  direction; otherwise proceed. 

Step 5: Calculate spectral parameters: 

 

11 


k

T

k

k

T

kCD

k
gd

gg


  
 

11

1

2

1

11 2
))((1








k

T

k

k

T

k

k

k

T

k

k

T

k

k

T

kNew

k
gg

gd

g

gd

gd

gg


  
 

Step 6: Calculate the current spectral path 
 

1 k

CD
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New

k
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Step 7: Let k = k+1 to move to Step 2. 
Conditions (5) and Powell restart criterion are sufficient to show the Fast-SCG method's global convergence. 

 

3.4.   Proposed convergence algorithm 

Consistency testing of the proposed Quick SCG method mentioned in (11) and (12), the following 

common and general assumptions can be used to prove convergence of any CG process: 

 

3.5.   Assumption 

a) For the starting point 1x , the level set )}()(,:{ 1xfxfRxxS n  is bounded. 

b) Neighborhood function f  is constantly differentiable Ω of S, and the gradient g satisfies:  

 

c)  
0;xx, ||,x-x ||L  ||)g(x - g(x)|| kkk  L

 (26) 

 
Obviously: 

from the Assumption ( i), true constant D occurs such that: 

 

},,max{ SxxxxD kk 
, D is the diameter of Ω (27) 
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Assumption (ii) involves a constant 0 , such that: 

 

Sxxg  ,)(
 (28) 

 

3.6.   Convergence of newly developed algorithm 

The new search directions are given by (11) and (12) satisfies:  
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From (21) we have,  
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In (32) becomes: 
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Reformulate; add and subtract a positive number yields: 
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Therefore, from (37) and (30) we have: 
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which indicates: 
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It challenges our assumption (29). Therefore, this theorem's proof is complete and the proposed 

Fast-SCG has a global convergence property. 
 

 

4. EXPERIMENTAL RESULTS 

Here we analyze the reliability of the real modern CUTE library solution suggested by Bongartz, et 

al. [24-26] set of 55-complicated nonlinear test problems. All these assessment questions are posed 

(n=100,400,700,1000). Calculate optimum output dependent on computation time (CPU), the number of 

iterations (NOI) and the number of function measures (NOF). All methods stop before the following state is 

met.  

 
510


kg

 (40) 
 

They also require such routines to end if NOI crosses 1000 or NOF hits 2000 without the minimum. 

We report the findings of the newly proposed process, claim, against Fast-SCG (CD [6], FR [2], PR [5] and 

HZ [8], LDW [19], BA [16], BH [17] and BK [21]). We are in Table1.  

 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

A fast spectral conjugate gradient method for solving nonlinear optimization problems (Ali A. Al-Arbo) 

437 

To show the new method's efficiency against other methods on complete NOI, NOF, and CPU 

results for 55 test problems, the relative percentage improvement (RPI) is measured and described. RPI 

shows that our system finds better outcomes in approaches previously suggested. (See in (41)) for RPI of our 

tools and [25] for the details).  

 

RPINOI (MethodX)= (MethodXNOI– MinNOI)/MinNOI (41) 

 

Table 2 indicates that CD is the worst and HZ is the best method in terms of NOI and NOF among 

the previous studies. Although the PR evaluates much more candidate solutions than HZ to reach an optimum 

solution, it is the fastest method among the previous studies. When we compare the results of Fast-SCG with 
the results of previous studies, it is clear that Fast-SCG improves the HZ results (NOI and NOF) by more 

than 25% and it completes its search process in half-time of the PR. In other words, Fast-SCG finds the 

optimum results by evaluating fewer candidate solutions in a shorter CPU time.  

The results in Table 3 are obtained by four SCG methods indicate that BK is the best method among 

the previous studies in terms of all three criteria. BA is the worst method in terms of NOI and NOF. LDW is 

the slowest method in terms of CPU. Furthermore, the Fast-SCG method outperforms all four previous 

methods in terms of all three criteria. It reduces the NOI and NOF by more than 50% and it speeds up by 

more than 25% when compared against BK.  

The following figures demonstrate the efficiency of the fast-SCG algorithm compared to regular and 

spectral CG algorithms according to the following points:  

a) The Figure 1 indicates the similarity of 9 NOI algorithms. 
b) The Figure 2 indicates 9 NOF algorithms equivalent. 

c) The Figu3 re reveals 9 CPU-related algorithms. 

 

 

Table 1. Total NOI; NOF and CPU for 55 test problems 

Total 55 Funct. 
Conjugate Gradient Methods Spectral Conjugate Gradient Methods 

CD FR PR HZ LDW BK BA BH Fast SCG 

TOTAL NOI 3671 3382 3626 1911 3001 2952 3416 3311 1432 

TOTAL NOF 7053 6779 6747 3994 6465 6377 6835 6784 2887 

TOTAL CPU 1.96 1.08 0.69 0.72 2.14 0.52 0.57 2.08 0.38 

 

 

Table 2. RPI results for (Cd, Fr, PR, Hz, and Fast SCG) 

 CD FR PR HZ Fast-SCG 

RPI
NOI

 0.92 0.77 0.90 0.00 -0.25 
RPI

NOF
 0.77 0.70 0.69 0.00 -0.28 

RPI
CPU

 1.84 0.57 0.00 0.04 -0.45 

 

 

 
 

Figure 1. Comparisons w.r.t. NOI 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 21, No. 1, January 2021 :  429 - 439 

438 

 

 

 

 

Figure 2. Comparisons w.r.t. NOF 

 

Figure 3. Comparisons w.r.t. CPU 

 

 

Table 3. RPI results For (LDW, BK, BA, BH, and Fast-SCG) 
 LDW BK BA BH Fast-SCG 

RPI
NOI

 0.02 0.00 0.16 0.12 -0.51 

RPI
NOF

 0.01 0.00 0.07 0.06 -0.55 

RPI
CPU

 3.12 0.00 0.10 3.00 -0.27 

 
 

5. CONCLUSION 

In this review, by introducing a new spectral parameter and changing the Wolfe line search 

algorithm, we propose a new SCG (Fast-SCG). It doesn't require some matrix data, so it's quickly applied 

both technically and experimentally. Global convergence property for the proposed new SCG approach is 

technically obtained. The suggested approach is contrasted with traditional and spectral CG models, i.e. (FR, 

PR, CD, and HZ) and (BK; BH; BA and LDW) using 55 well-known non-linear experiments. Our proposed 

solution incorporates the following eight performance mechanisms (NOI, NOF, and CPU). 
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