
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 20, No. 1, October 2020, pp. 353~360

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v20.i1.pp 353-360 353

Journal homepage: http://ijeecs.iaescore.com

A computational forensic framework for detection of hidden

applications on Android

Tahira Rasul
1
, Rabia Latif

2
, Nor Shahida Mohd Jamail

3

1Department of Information Security, College of Signals, National University of Sciences and Technology (NUST), Pakistan
2,3College of Computer and Information Sciences, Prince Sultan University, Saudi Arabia

Article Info ABSTRACT

Article history:

Received Jan 22, 2020

Revised Mar 27, 2020

Accepted Apr 11, 2020

 Smartphones, since their emergence has become a significant part of our
lives and Android is popular of all. They are successful due to the increasing

availability of user applications to answer every possible need, so it is of
great importance to ensure security and privacy when handling personal and
sensitive information of the user. To secure the data on mobile devices, users
use applications available on the Google Play store, which help to hide data
on their devices known as Hidden Applications. Hidden applications are
categorized as one of the major applications used for data hiding and storing.
These applications can be used to hide date from snooping, intrusion and
against the data theft. Therefore, the proposed framework in this research
helps to find either they store and hide data in efficient manner or not and if

they do so either it is encrypted or not. In this paper, main objective is to
identify the privacy threats which end users face by using such applications,
analyse these application’s behaviour, working, their code to understand how
data is hidden and if the information is encrypted, it can be retrieved or not.
The work not only focuses on the identification of hidden data/apps; it also
provides a mechanism to recover and reconstruct the data from these hidden parts
of the memory. In the end, present the results obtained by using the proposed
framework in a case file so that it can be used in a criminal court case.

Keywords:

Android

Data hiding

Forensic investigation

Physical and logical
Rooted and non-rooted

Copyright © 2020 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Tahira Rasul,

Department of Information Security,

National University of Sciences and Technology (NUST), Islamabad, Pakistan

Email: tahirarasul.msis14@students.mcs.edu.pk

1. INTRODUCTION

Smartphones, being repositories for photos, messages, e-commerce, and social existence, are
required to store the desired information securely [1]. There are several applications which provide security

and safety to the user, among which hidden applications are commonly used [2]. They are readily available

on Play Store and provide the purpose of hiding storage data at different locations either online or other

folders / offline from snooping eyes and intruders and to conceal the valuable data from being spied. Hidden

applications are prone to vulnerabilities, frauds and criminal activities and claim to offer a higher level of

security than the already available on an android [3]. Hidden Application in this research are referred to as

those applications which can hide images, videos, media files and other documents as well. Sometimes these

applications also hide other applications. These hidden applications come in variety of forms, few of them

hide their icon in application tray while few come disguised as another form at front end and when some

specific password is typed original application is opened for example clock, volume fixer, calculator etc.

In past, there had been cases when criminal activities were performed by the use of smartphones.
Upon the investigation by the law enforcement agencies, manufacturers refused to provide the information

and resultantly there was no way to get the hidden information. Therefore, it is progressively vital for law

enforcement agencies to remain vigilant regarding the latest developments and know how data is concealed

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 20, No. 1, October 2020 : 353 - 360

354

[4]. Google Play Store [5] is a significant source of applications for Android OS based Smartphones.

Hidden applications are selected on the following criteria: (a) Hides User Data (b) Disguised as other

applications (c) Strong password setting (d) Number of downloads (e) User’s reviews, (f) Customer support

and (g) “Data Hide” keyword. In case of criminal activity, these applications prove as a hindrance

for forensic investigations as they hide storage files, relevant documents, phone calls and messages.

For example, in 2015, high school students exchanged questionable images among them and hid those

images using a calculator like hidden applications. In an investigation, it was found that such applications

exist and raised the concern how to recover data [6] as these applications use extra permissions to access
other memory areas of device [7] and investigators were failed to find out the actual data which caused the

concern. One of widely trusted and used paid forensic tool is Cellebrite [8], it can detect all the installed

applications. Even though Cellebrite provides many features but it is not able to detect any suspicious

application behaviour which can be used to hide information [9].

The main objective of this research is to identify hidden applications and their respective behaviour

that how they hide the data [10], which will provide a foundation for proposing a computational forensics

framework. The study aims to analyse artefacts in these applications as they offer evidentiary data in the form

of photos, messages, contact lists etc. The focus is to propose a remedial framework to enhance the security

of an Android device, to check the loopholes where these applications miss-use the information or present the

data as it is, and to help the investigators in future to get the information from an android device immediately

if it is suspected.

Already a lot of work has been reviewed in three significant areas: types of android applications,
selection of hidden applications, and Android forensic techniques. Several studies have been carried out in the

domain of the steganography, forensic analysis of android and retrieval of sensitive information from images.

Thus contributing towards the detection of hidden information, content in steganography and general android

forensics discussing the techniques of how to carry out the device forensics. Several forensic tools including

Androphsy [11], Droidwatch [12] and Amandroid [13] have also been proposed earlier that cover the android

investigation procedure and give guidance to investigators, but no specific framework related to the

investigation of hidden applications and data retrieval from these data hiding applications has been proposed.

The contribution of this paper include: (1) Acquisition of hidden applications, comprehensive

forensic analysis and compilation of results, (2) Forensic analysis of android devices with/ without hidden

applications and (3) Proposal of a computational forensic framework for detection of hidden applications on

an android. Rest of the paper is organized as follows: Section 2 discusses literature review. Section 3 research
method. Section 4 discusses results and discussions and Section 5 discusses conclusion.

2. LITERATURE REVIEW

2.1. Types of android applications

There are three types of Android Applications. Table 1 below shows Android OS applications

comparison [14]. Table 1 shows that native applications are high on development cost, performance and user

interface is better as compared to hybrid and third party applications which are fair/low in performance.

Table 1. Android operating system (os) applications comparison
 Native Applications Hybrid Applications Third Party / Web Applications

Development Cost High Low Low

Performance High (Data on device) Low (Data on Web Server) Low (Data on Web Server)

User Interface Better Fair Fair

2.2. Android forensic techniques

Primarily there are four significant methods to do forensics of an Android device [15]:

a) Acquiring Physical Image: Physical Image is a bit-by-bit copy of the Android device. Data residing on a

device also on the unallocated space and the deleted data files are all copied through this method.

b) Acquiring Logical Image: There are a number of tools available for this method but logical image
cannot recover the data from the deleted/ unallocated data space. Backup of device in known as logical

image [16].

c) Imaging Memory Card: Memory card is removed safely, and data is copied and examined.

d) Manual Method: When an Android device is brought for the forensics investigation, screenshot of every

action performed on the device is taken. This is time-consuming and also not accurate.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

A computational forensic framework for detection of hidden applications on Android (Tahira Rasul)

355

2.3. Apparatus setting and test scenario creation
Table 2 shows the android devices that are used in this research along with their versions and root options.

Table 2. Apparatus for forensic investigation
 Android Device Version Root Option

1 Samsung Grand Prime Lollipop Rooted

2 Huawei Mate 10 Oreo Non-Rooted

Samsung Grand Prime and Huawei Mate 10 were used to hide the data and perform forensics.

Selected Hidden Applications are installed and images are hidden using these applications. For Rooted

devices, image is taken, and for non-rooted backup is taken. Both image and backup are taken twice as before

and after the installation of hidden applications to examine.

2.4. Analysis methods
Mentioned below is the list of analysis carried out for this research purpose [17]:

a) Configuration Analysis – On Android Device

b) Static Analysis – Reverse Engineered the Application to observe/analyze the code

c) Rooted Android Device – Physical Acquisition / Image File

d) Non-Rooted Device – Logical Acquisition / Backup File

e) File System Analysis – Android device internal file examination

Hidden Applications for this research purpose are analyzed, both dynamically and statically [18].

For dynamic analysis, applications are installed and analyzed on an android device. For static analysis,

APK of application has been converted to source code and code has been analyzed extensively [19].

2.5. Analysis of hidden applications
This section explains the dynamic analysis, static analysis, rooted android device analysis,

non-rooted android device analysis and android file system analysis carried out in this research [20].

Dynamic Analysis: Applications were thoroughly examined after installation and login settings. The major

features that are analyzed include: available in recent applications list or not, Easy to use, Vault camera

available, Password protected, Password recovery option available, Fingerprint available, Pattern available,

Facedown closes the app, Create new folders and text files, Private Cloud available, Loss of data on deleting

and uninstalling the app and Administrative rights are required to uninstall the application.

Static Analysis: After performing reverse engineering, code obtained from the APK has been investigated to

find out the critical functions on which these applications work. Code obtained was obfuscated as well,

but mostly all the applications had “hide function” which upon investigation found out that it contained the

information in plain letters for example user password and login details. Hide functions, locations (where

data is stored) and login functions are retrieved in the research.
Rooted Android Device Analysis: An Android device which has root access to the Android OS is

known as “Rooted Device”.

a) Image Creation: To examine the rooted device for research, ADB (Android Debug Bridge) is used from

Android Studio to take the “Image” of the android’s memory [21]. Further, Autopsy is used to read the

image obtained from the device.

b) Forensic Investigation analysis without Hidden Applications Installed.

c) Forensic Investigation with analysis Hidden Applications Installed.

Non-Rooted Android Device Analysis: All the available android devices comes with certain

restrictions from manufacturers, they are non-rooted.

a) Backup Creation: ADB (Android Debug Bridge) is used in a command terminal to access the device
using ADB commands and take the backup. After that, Android Backup Extractor is used to read the .ab

file obtained from backup and extract it to readable format obtained in the .zip folder [22].

b) Forensic Investigation without Hidden Applications Installed.

c) Forensic Investigation with Hidden Applications Installed.

Android File System Analysis: After analysing android rooted and non-rooted devices, another

aspect of investigating and detecting hidden application is observing Android File Structure [23]. In previous

sections, we have seen that few apps add “.hide” or “.hidden” after the file extension to hide the data, few of

them move the files from internal device storage to their folder by changing name and few properly encrypt

the data and hide [24].

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 20, No. 1, October 2020 : 353 - 360

356

File structure can also be used to observe an android device. Several hidden applications use files

structure to manipulate the data files and place it at the same location. 10/18 applications were accessed using

file structure analysis. Therefore, there is a chance of getting accurate data by only observing internal storage.

Comparison of Image and Backup File: Table 3 shows the comparison of results found from

image and backup file analysis carried out in research.

Table 3. Analysis of image and backup file
Android Device Size Total Applications

Rooted Device (Physical

Acquisition / Image)

Without Hidden Applications 6.50 GB of 8 GB 24

With Hidden Applications 7.28 GB of 8 GB 42 (18 detected)

Non-Rooted Device (Logical

Acquisition / Backup)

Without Hidden Applications 470 MB of 64 GB 34

With Hidden Applications 609 MB of 64 GB 44 (10 detected)

In the table above, results for rooted device shows that this case study has helped in a way that no

hidden application is missed in the physical acquisition of android device.

Results for non-rooted devices shows that ten out of eighteen hidden applications installed are

shown in the backup file. Therefore for forensic investigators, this case study of observing backup file of non-

rooted Android devices do not show the complete applications installed from third party sources. So, while

examining the non-rooted android device, internal storage must be checked bit by bit as well to find out clues

to hidden data in android device.

3. RESEARCH METHOD

This section discusses the proposed framework architecture, methodology, framework step-by-step

guide and a computational forensic framework for detection of hidden applications pseudocode based on the

analysis carried out in methodology section. Figure 1 shows the architecture of the proposed computational

forensic framework for the detection of hidden applications in this research:

Figure 1 of framework architecture above perform the following functions to gather the information

from android device and find out the desired information:

a) Forensic investigator gets the android device for analysis.

b) For safety purpose the device has been put in Farady cage.

c) Investigator kills all the processes running on the device to stop network communication or external

interference.
d) Backup copies are created so that data cannot be compromised.

e) One of the copy is brought to the workstation for analysis.

f) Backup files are also available on cloud if collaboration is needed with other investigators.

g) Results are gathered, stored in database and reports are generated.

Figure 1. Framework architecture

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

A computational forensic framework for detection of hidden applications on Android (Tahira Rasul)

357

Framework architecture defined clearly in framework methodology. It includes android device

acquisition, data acquisition and data analysis:

a) Android Device Acquisition: The analysis includes checking the device’s state either it is off or on,

if on then either locked or not, connected to the network or not and SD card slot available or not.

After that power of the device. As the examination might be power-intensive, therefore the device can

be plugged. After that copying the data from the device’s to the investigator’s external storage so that

backup is also created right after the acquisition of device. Perform further analysis on investigator’s

copy of data, and thus if any changes are made, original data is not compromised that is present on the

internal device storage.

b) Data Acquisition: Data acquisition can be time taking, as android devices are coming in large storage
space options, and if the device has SD card option as well, then it can take more time to copy data.

First of all, if the device is locked, the forensic investigator is required to unlock it with any unlocking

tool available with him, and after that, Android forensic techniques can be followed to acquire data.

c) Data Analysis: Data Analysis is divided into manual and technical analysis discussed below. Analyze

the information that is acquired previously in the following steps:

Manual Data Analysis Procedure:

a) List down applications installed on the device by going to settings -> apps and notifications.

b) Check if any application has name or words including obvious hints to hiding data.

c) Check those applications which have separate password and which are present twice.

d) Try to double tap the application’s icon as it opens the original application.

e) Check if media files and documents are not located in device’s original storage location.
f) Check if there is any folder related to media with same name.

Technical Data Analysis Procedure:

1) Connect Android device with forensic work station.

2) Allow “File Transfer” option.

3) Run search related to hint words so that any folder, file and application can be refined.

4) Check if any file type extension is manipulated as 2/18 applications add words after files extension and

2/18 remove the file extension and add hex value at the end of file name.

5) Check if media files and documents have “.” at the start of their name.

6) List down all third party packages installed on device using command: “adb shell pm list packages -3”

7) Check if mobile device is rooted or not [25].

a) If an Android device is not rooted: Take Logical Acquisition of device by taking Backup, Analyse
the Backup file, Compare the list of third party packages with the applications in backup file, Check

“SP” folder in application, this is the location where these applications hide user login credentials,

and finally, Check “Data” folder in application.

b) If an Android device is rooted: Take Physical Acquisition of device by taking Image Analyse the

Image file, Compare the list of third party packages with the applications in Image file, All the

similar applications must be analysed, Check “Shared_Prefs” folder in application, this is the

location where these apps hide user login credentials and finally, Check “Data” folder in application.

8) If after all these, no results are found and no hidden application is detected then applications must be

reversed engineered to get the source code.

9) Observe the source code “main activity” class and get the hint to main functionality the application

performs. From there, hidden data can be found. As location to the path where hidden data is stored is
mentioned, and password reset functions can also be found.

The framework guide will provide overall steps of the proposed forensic framework and how

methodology is incorporated:

Device acquisition from the spot.

1) Shield the device with Farady Cage.

2) Kill all the processes running in the device.

3) Copying of data from internal storage to external (SD card or hard drive).

4) Forensic investigator’s workstation with external data card reader (SD card reader or hard drive reader).

5) Data analysis (following the data analysis mentioned before)

6) If hidden files exist then store data in separate directory.

7) When hidden data is stored, create database to store data in respective tables with defined hidden

applications attributes, else simple store the data to analyse.
8) Online backup of analysis to compute results.

9) Open collaboration with online forensic investigators to carry out analysis in parallel.

10) Result based reporting.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 20, No. 1, October 2020 : 353 - 360

358

Proposed pseudo-code for the framework is discussed below. Pseudocode explains the acquisition of

device, copying of data and investigation with online collaboration with multiple investigators and finally

explains reporting and data storage as retrieved. It involves the killing of processes so that no external

communication can be made with the device.
1: Acquire device from spot
2: Shield the device with Farady Cage
3: If exists alive process then
4: Kill all process
5: end if
6: Copying of data from internal storage to external

7: Prepare forensic workstation to work with external data reader
8: Data Analysis
9: If hidden data exist then
10: Store data in separate directory
11: Else
12: Take image of device data
13: End if
14: If hidden data stored then

15: Create database
16: Store data in respective tables with defined hidden applications attributes
17: Else
18: Simply store the data to analyse
19: Online backup of analysis to compute the results
20: If working in team then
21: Open collaboration with online forensic investigators to carry out analysis in parallel
22: End if
23: Result based reporting.

24: Else
25: Analyse Data to find clue
26: End if

4. RESULTS AND DISCUSSIONS

Performance of chosen hidden applications is analyzed from the proposed framework and summary

is gathered in Table 4. Most of the applications serve the purpose of hiding data, but they are also prone to

weak programming, as data and login credentials can easily be found. Table 4 shows the framework
evaluation and analysis results.

Table 4. Evaluation of results
S.No Application Code Analysis Image (Photo) Video Password Phone State

1 Phone Dialer M U U C R , NR

2 File Hider N U U C R , NR

3 File Hide Expert N E E E R , NR

4 Gallery Vault O U, Ek U, Ek E R , NR

5 Folder Hider Expert - E E C R , NR

6 Vault O , N U U E R , NR

7 Vaulty - E E E R

8 Hide it Pro M U U C R , NR

9 Clock N U U C R , NR

10 Calculator O U U C R

11 Timer N U U C R

12 Calculator O, N U U C R , NR

13 Calculator N U U E R, NR

14 Keepsafe O , N U U C R

15 Calculator N U U C R , NR

16 TimeLock M U U C R

17 Apps Lock and

Gallery Hider

M E E C R

18 zCalculator - U U C R

 Result O = 5/18

M = 3/18

N = 7/18

U = 14/18

E = 4/18

Ek = 1/18

U=14/18

E= 4/18

Ek=1/18

C =

13/18

E = 5/18

R = 7/18

R, NR= 11

/18

O = Code was obfuscated M = Main Function has critical data and pointers to other functions

U = Unencrypted File N = Functions in Native Library

Ek = Encryption Key available E = Encrypted File

C = Clear File NR = Non-Rooted, R = Rooted

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

A computational forensic framework for detection of hidden applications on Android (Tahira Rasul)

359

Code analysis and Table 4 shows that 5/18 applications had obfuscated data, 3/18 had the main

function having critical data, and 7/18 had normal native library functions. Image analysis and video analysis

with respect to the proposed framework shows that 14/18 applications stored data unencrypted, 4/18 apps

stored data using encryption and 1/18 application had encryption key available. Password analysis shows that

13/18 applications saved the password in clear text and 3/18 saved password in an encrypted format.

Phone state analysis showed that during all the investigation and finding 7/18 applications were observed and

retrieved data in a rooted format and 11/18 retrieved data in both rooted and non-rooted thus showing that

clear images and data can be retrieved from such applications.

5. CONCLUSION

The hidden applications serve the purpose of hiding data accurately and also save information from

misuse in case of theft and data leakage. Beside major features are available in pro versions, the basic version

of all the applications provide hiding media accurately by encrypting the data. Thus, they prove to be a

hindrance in forensic investigation. In this research, by the comparison of rooted and unrooted devices and

forensic analysis, it has been seen that rooted devices offers more clues. If any device is subjected to be

forensically investigated in case of criminal activities or involved in trying to find out the hidden data; the

forensic framework presented in this research, can cover all the aspects to detect the hidden applications.

Even it helps to get the clue of an application from a single word, data hidden using such application and user

login credentials as well. Forensic investigators can acquire and analyse the device easily using this

framework to understand the clues necessary for court hearings.

ACKNOWLEDGEMENTS

This work was partially supported by the Artificial Intelligence Data Analytics Lab (AIDA),

Prince Sultan University, Riyadh, Saudi Arabia.

REFERENCES
[1] R. R. S. N. H. A. Nor Afifah Shafin, “Implementation of persuasive design principles in mobile application

development: a qualitative study,” Indonesian Journal of Electrical Engineering and Computer Science, Vol. 18,
no 3, pp. 1464-1473, June 2020.

[2] U. K. Michaila Duncan, “Detection and Recovery of Anti-Forensic (VAULT) Applications on Android Devices,”
Annual ADFSL Conference on Digital Forensics, Security and Law, 6, 2018.

[3] W. Y. H. L. M. S. a. S. A. S. Azadegan, “Novel Anti-forensics Approaches for Smart Phones,” 2012 45th Hawaii

International Conference on System Sciences, Maui, HI, nº 10.1109/HICSS.2012.452, pp. 5424-5431, 2012.
[4] M. A. S. S. A. L. A. H. M. Tehseen Mehraj, “A critical insight into the identity authentication systems on

smartphones,” Indonesian Journal of Electrical Engineering and Computer Science, Vol.13, no 3,
pp. 982-989, 2019.

[5] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, "Hey, You, Get Off of My Market: Detecting Malicious Apps in
Official and Alternative Android Markets", In Proceedings of the 19th Annual Symposium on Network and
Distributed System Security (NDSS 2012), Feb. 2012.

[6] B. F. B. Xiaolu Zhang, “Breaking into the vault: privacy, security and forensic analysis of android vault
applications,” Computers & Security (2017), http://dx.doi.org/doi: 10.1016/j.cose.2017.07.011

[7] S. M. S. a. S. H. Howida Abubaker, “Exploring permissions in android applications using ensemble-based extra
tree feature selection,” Indonesian Journal of Electrical Engineering and Computer Science, Vol.19, no 1,
pp. 548-557, 2019.

[8] W. B. G. Karl-Johan Karlsson, “Android Anti-forensics: Modifying CyanogenMod,” 2014 47th Hawaii
International Conference on System Science, Vol.10, 1109, p. 593, 2014.

[9] T. B. Tajuddin and A. A. Manaf, "Forensic investigation and analysis on digital evidence discovery through
physical acquisition on smartphone," 2015 World Congress on Internet Security (WorldCIS), Dublin, 2015,
pp. 132-138.

[10] S. P. Mylam Chinnappan Babu, “Protecting sensitive information utilizing an efficient association representative
rule concealing algorithm for imbalance dataset,” Indonesian Journal of Electrical Engineering and Computer
Science, Vol.15, No 1, pp. 517-524, 2019.

[11] B. P. a. A. A. I. U. Akarawita, “ANDROPHSY - forensic framework for Android,” 2015 Fifteenth International
Conference on Advances in ICT for Emerging Regions (ICTer), Colombo, 2015.

[12] J. Grover, “Android forensics: Automated data collection and reporting from a mobile device,” Digital
Investigation, pp. S12-S20, 2013.

[13] S. R. X. O. a. R. Fengguo Wei, “Amandroid: A Precise and General Inter-component Data Flow Analysis

Framework for Security Vetting of Android Apps,” ICC (inter-component communication), Android app security
analysis, Static analysis, vol. 14, pp. 2471-2566, 2018.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 20, No. 1, October 2020 : 353 - 360

360

[14] G. D. H. D. S. S. H. Anirban Sarkar, “Android Application Development: A Brief Overview of Android Platforms
and Evolution of Security Systems,” 2019 Third International conference on I-SMAC (IoT in Social, Mobile,
Analytics and Cloud) (I-SMAC), pp. 73-79, 2019.

[15] K. K. L. A. Nihar Ranjan Roy, “Android Phone Forensic: Tools and Techniques,” International Conference on
Computing, Communication and Automation (ICCCA2016), 2016.

[16] Hoog, Android Forensics: Investigation, Analysis, and Mobile Security for Google Android. Syngress, 2011.
[17] V. P. S. J. Uma Narayanan, “A novel approach to big data analysis using deep belief network for the detection of

android malware,” Indonesian Journal of Electrical Engineering and Computer Science, Vol.16, No 3,
pp. 1447 - 1454, 2019.

[18] F. M. A. N.S. Selamat, “Comparison of malware detection techniques using machine learning algorithm,”
Indonesian Journal of Electrical Engineering and Computer Science, Vol.16, No 1, pp. 435-440, 2019.

[19] R. T. H. M. Satish Bommisetty, em Practical Mobile Forensics, 2014.

[20] N.-T. C. S. K. a. S. J. Long Nguyen-Vu, “Android Rooting: An Arms Race between Evasion and Detection,” Wiley,
Security and Communication Networks, vol. 2017, p. 13, 2017.

[21] K. S. M. S. G. C. K. C. Soudamini Patil, “Data Extraction Techniques for Android Based Devices,” International
Journal of Computer Science Trends and Technology (IJCST), Vol. 5, Issue 2, Mar – Apr 2017.

[22] N. E. A. B. Yun Shen, “Insights into rooted and non-rooted Android mobile devices with behavior analytics,”
In Proceedings of the 31st Annual ACM Symposium on Applied Computing (SAC ’16), NY,USA, 2016.

[23] M. A. Darren Quick, “Forensic analysis of the android file system YAFFS2,” Australian Digital Forensics
Conference, 1-1-2011.

[24] T. X.-h.,. W. J. CHANG Xu, “Forensic research on data recovery of android smartphone,” Proceedings of the 2nd
International Conference on Computer Science and Electronics Engineering (ICCSEE 2013), 2013.

[25] D. R. V. D. D. V. M. T. Rizwan Ahmed, “Efficient Generalized Forensics Framework for extraction and
documentation of evidence from mobile devices,” International Journal Of Enhanced Research In Management
And Computer Applications, vol. 2, no 1, 2013.

BIOGRAPHIES OF AUTHORS

Tahira Rasul has received her BS - Information Technology from School of Electrical
Engineering and Computer Science – NUST Islamabad, Pakistan in 2013. In 2015, she pursued her
MS - Information Security National University of Sciences and Technology - Islamabad, Pakistan.
Her research interests include Wireless networks, Databases and Android architecture. She is
currently associated with Department of CS & IT, Women University of Bagh. AJK, Pakistan.

Dr. Rabia Latif received her MS in Information Security (2010) and PhD in Information
Security (2016) from National University of Sciences and Technology, Pakistan. She is currently
working as Assistant Professor in Prince Sultan University, Riyadh, Saudi Arabia. Her Research
interest includes Cloud Computing Security, Web Security, Cyber Security and Network
Security. Her professional career consists of activities including Conference Chair, Technical
Program Committee Member and reviewer for several international journals and conferences.
She is an active member of Artificial Intelligence Data Analytics Research Lab at Prince Sultan
University, Riyadh.

Dr. Nor Shahida Mohd Jamail is currently in Prince Sultan University, Riyadh, Saudi Arabia
as an Assistant Professor. She obtained her PHD in Software Engineering from Universiti Putra
Malaysia. Her specialized are purely in Software Engineering, Software Process Modelling,
Software Testing and Cloud Computing Services. She had involved in Machine Learning
Research Group in Prince Sultan University and also involved in research project which
collaborated with National and International University. Email: njamail@psu.edu.sa

