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Abstract 
The orthogonal space-time coded continuous phase modulation (OST-CPM) system shows 

attractive performance over fading MIMO channels. In this paper, the Chernoff bound on pair-wise error 
probability (PWEP) is studied for two transmit antennas over spatially correlated quasi-static Rayleigh-
fading channel. The maximum likelihood sequence detection (MLSD) algorithm is applied to the OST-CPM 
system. Approximate bound for high signal-to-noise ratio (SNR) is derived to evaluate the encoding 
performance in correlated channel. The effects of correlation coefficient matrices on the coding 
performance are simulated. Both analytical and simulation results show that the coding performance of this 
system decreases as the fading coefficients between the antennas increases. And the penalty on the 
coding performance increases a lot in fully correlated channel. 
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1. Introduction 
Space-time coding has shown considerable promise for reliable transmission over 

wireless fading channels by efficiently employing diversity [1] -[5] . Almost all existing space-
time code designs consider linear modulation scheme. However the continuous phase 
modulation (CPM) has the characteristics of constant envelope and phase continuity. Therefore 
CPM has become an attractive scheme for the data transmission over both bandwidth and 
power limited links such as mobile satellite communications [6] . Combining CPM with space-
time coding (STC-CPM) can provide better performance in wireless communications [7] -[11] . 
Wang et al.[8] extended Alamouti's orthogonal encoding criterion to CPM signals and designed 
orthogonal space-time coded CPM (OST-CPM) systems with nT=2, where different CPM 
schemes are applied for the two transmit antennas. The optimum detection method for OST-
CPM systems is maximum likelihood sequence detection (MLSD) algorithm. Previous work on 
OST-CPM systems has been restricted ot the ideal case of independent and identically 
distributed (i.i.d.) channels, i.e., uncorrelated fading channels. However insufficient antenna 
spacing and lack of scattering cause the individual antennas to be correlated for a real-world 
channel model [12] . 

Chernoff bounds on pair-wise error probabilities (PWEP) have been used to design 
space-time codes and analyze the performance of multiple-input-multiple-output (MIMO) 
wireless communication systems. The effect of spatial correlation on the PWEP of the space-
time code is studied in slow Rayleigh fading MIMO channels [13] [14] . Most of the work 
reseached on OST-CPM is on encoding and decoding design, and no similar work has been 
done with the impact of spatial correlation. 

In this paper, we derive Chernoff bound expressions for MLSD algorithm of the OST-
CPM system in a correlated quasi-static Rayleigh-fading channel. Approximate Chernoff bound 
and achievable diversity gain are derived for high scattering signal-to-noise ratio (SNR). We 
consider spatically correlated fading on the transmit or receive side or both. The frame error rate 
(FER) performance of OST-2CPM systems in fully and partially correlated and i.i.d. channels 
are simulated and compared with each other. 
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2. System Model 

In this paper, a wireless communication system with nT transmit and nR receive 
antennas is considered. For simplification we just focus on the baseband equivalent block 
diagram of the OST-CPM system, which is shown in  

Figure 1. 
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Figure 1. Simplified base-band equivalent block diagram of OST-CPM system 

 
 
We define an nT×L space-time codeword matrix X as the input of space-time coded 

modulator, obtained by arranging the transmitted sequence in an array as 
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where the i-th row xi =[xi,1, xi,2, …, xi,L] is the data sequence transmitted from the i-th transmit 
antenna. Then the OST-CPM signals are simultaneously transmitted from the nT transmit 
antennas. 

The transmitted signal at the i-th antenna can be represented as 
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where Es is the symbol energy, T is the symbol period,  (t, xi) is the carried phase information, 

h is the modulation index. ( ) ( )
t

q t g d 


   is the phase smoothing response function. g(t) is the 

pulse shaping function, which is nonzero only at the limited time period 0≤t≤LT (L is the 
modulation memory). We take the OST-CPM system with two transmit antennas for example. 
The two CPM-modulated signals are transmitted by the two transmit antennas simultaneously. 
Due to the orthogonal coding design for the CPM signals, the rows of the matrix 
 

   
   

1 1

2 2

, ,

, ,

  
  

s t s t T

s t s t T

X X

X X
 (4) 

 
are orthogonal for each t for the MSLD algorithm to be studied in the next section [8]  

The MIMO channel with nT transmit and nR receive antennas can be represented by an 
nT×nR channel matrix H. At time t, the channel matrix H is given by 
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where hi,j(t) is the correlated fading coefficient for the path from the i-th transmit antenna to the j-
th receive antenna, and is modeled as a complex Gaussian random variable with zero mean 
and variance σ2. For quasi-static fading channels, the fading coefficients are constant during a 
frame and vary from one frame to another, which means that the symbol period is small 
compared to the channel coherence time. So we can ignore the time t of the fading coefficient 
hi,j(t) to hi,j. 

A slightly less general but more useful model considers correlations on transmit and 
receive sides separately. The transmit correlation matrix is represented as RT while receive 
correlation matrix is as RR, which can be represented as 

 

R R
H
RR = K K  (6) 

 
where KR is a nR×nR matrix and 
 

T
H
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where is KT a nT×nT matrix and superscript H denotes the Hermitian (transpose conjugate) of a 
matrix. Matrices KR and KT are nR×nR and nT×nT lower triangular matrices with positive diagonal 
elements. They can be obtained from the respective correlation matrices RR and RT by 
Cholesky decomposition. The coefficient matrix in correlated channels, denoted by H, is 
represented as [15]  
 

 TR wH K H K  (8) 

 
where wH  is a i.i.d. channel fading coefficients matrix. 

At the receiver, the signal at each receive antenna is a noisy superposition of the nT 
transmitted signals degraded by channel fading. At time t, the received signals at the j-th 
antenna can be written as 
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where nj(t) is the noise component of the j-th receive antenna at time t, which is modeled as a 
zero-mean complex Gaussian random variable with one sided power spectral density N0 per 
dimension. 
 
 
3. Performance Analysis 

The optimum decoding and demodulation of OST-CPM system is maximum likelihood 
sequence detection (MLSD) algorithm. We assume that the decoder at the receiver has ideal 

channel state information (CSI) on the MIMO channel. The decoded codeword matrix X̂  can be 
expressed as 
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The pair-wise error probability (PWEP) is the probability that the decoder selects as its 

estimate an erroneous matrix 1 2
ˆ ˆ ˆ ˆ, , ,   
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T
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T
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nX x x x . In maximum likelihood decoding algorithm, that occurs if 

 

       
2 2

, ,
0 0

1 1 1 1

ˆ, ,
   

      
R T R Tn n n nLT LT

j i j i j i j i
j i j i

i ir t h s t dt r t h s t dtx x  (11) 

 
The above inequality is equivalent to 
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where Re{·} means the real part of a complex number. 

It has been assumed that ideal CSI is available at the receiver. That is to say a 
realization of the fading coefficient matrix H is given. Therefore the term on the left side of (12) 
is a zero mean Gaussian random variable and the term on the right side is a constant equal to 

   2 ˆ,d  
 X XS S . And    2 ˆ,d  

 X XS S  is a modified Euclidean distance between the two 

OST-CPM signal matrices S(X) and  ˆS X . 
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The PWEP conditioned on H can be approximated by [8]  
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The modified Euclidean distance    2 ˆ,d  
 X XS S  can be rewritten as 
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where  , ˆB X X  is a nTnT signal distance matrix with entries 
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and  i t  is the difference signal 
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For simplicity, we note    2 , ˆd     S SX X . By using Graig's formula for the Gaussian 

Q function 
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we can rewrite the conditional PWEP (14) as 
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In order to calculate the average PWEP, we average (19) with respect to the distribution 

of  . The average PWEP can be represented in terms of the moment generating function 
(MGF) of  , which is given by 
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Thus the average PWEP can be represented as 
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Therefore the PWEP can be represented as [16]  
 

 
1 1

2
20 001 1 1 1

1
1 1

44 sin
ˆ

R RT Tn n n n
s s

i j i j
i j i j

E E
P d

NN



    
 

 

   

   
           

 X X  (22) 

 

where i and j are the eigenvalues of matrices  , ˆ
TRB X X  and RR respectively. Equation (22) 

is the Chernoff bound for the PWEP. When the SNR is high, the upper bound can be simplified 
as [3]  
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where r and r̂  are the ranks of  , ˆ
TRB X X  and RR respectively. ( 1,2, , )i i r    and 

ˆ( 1,2, , )j j r    are the nonzero eigenvalues of  , ˆ
TRB X X  and RR. 

Then we will analyze the encoding performance variation of the OST-CPM system 
when the MIMO channels are correlated. In independent MIMO fading channels, the correlation 
coefficient matrices RT and RR are unit matrices with nT and nR nonzero eigenvalues 
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respectively, which are defined as    1,2, , 1, 2, , 1i T Rji n j n      .  , ˆB X X  and RT are 

independent and RT has full rank, thus the rank of  , ˆ
TRB X X  is the same as the one of 

 , ˆB X X . The product of all the nonzero eigenvalues i (i=1,2,…,r) of  , ˆ
TRB X X  equals to the 

product of the nonzero eigenvalues  1,2, ,k k r    of  , ˆB X X  and the ones 

 1,2, ,i Ti n    of RT. 
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For independent MIMO channels, the PWEP upper bound (23) of OST-CPM could be 

simplified to 
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When the MIMO channel is partially correlated, matrices RT and RR are full rank. The 

PWEP upper bound could be represented as 
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For full rank matrices RT and RR with Toeplitz form, all the eigenvalues  1,2, ,i Ti n    

and  1, 2, , Rj j n    are nonzero and the multiplication of all eigenvalues is smaller than 1. 

That is to say 
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Consequently we can derive that 
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The PWEP upper bound in equation (27) is increased with independent MIMO 

channels. Finally we have deduced that the encoding performance of the OST-CPM system in 
partially correlated channels is degraded than the performance in independent channels. 
 
 
4. Simulation Results 

In this section, some simulation results are presented to evaluate the FER 
performances of the MLSD over quasi-static Rayleigh fading channels with spatial correlation. 
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OST-2CPM systems of full response CPM signals with two transmit antennas are considered. 
The number of receive antennas is one and two. The modulation index h is choosen to be 0.25 
and 0.5. The transmit and receive antenna correlation matrices are given 

by
1 1
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 for the two transmit and two receive antennas systems. 
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Figure 2. FER of OST-2CPM (h=0.25) with 2 transmit antennas and 1 receive antennas 
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Figure 3. FER of OST-2CPM (h=0.5) with 2 transmit antennas and 1 receive antennas 
 
 

 
Figure 2,  
Figure 3 and  
Figure 4 show the FER performances of the MLSD algorithm for the OST-2CPM system 

with different modulation index h. Simulation results show that the error performance over a 
correlated channel is degraded by approximately 2dB at a FER of 10-2 when the correlated 
index t increases from 0 to 0.7 for the one-receive OST-2CPM system. And the penalty on the 
code performance increases to over 9dB at the same FER in fully correlated channel. For the 
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two receive antennas OST-2CPM system the FER is degraded by approximately 3dB at a FER 
of 10-2 when the correlated index t increases from 0 to 0.7. It can also be observed from the 
two figures that the diversity gain decreases when the channel is fully correlated. The upper 
bounds can be closer when the diversity is high, e.g., if the number of the transmit or receive 
antennas is increased. 
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Figure 4. FER of OST-2CPM (h=0.5) with 2 transmit antennas and 2 receive antennas 
 
 

 
 
5. Conclusion 

The effect of the spatial correlation on MLSD of OST-2CPM system over Rayleigh 
fading channels was investigated in the paper. The PWEP upper bound of OST-2CPM systems 
was deduced to evaluate the coding performance over quasi-static fading channels with spatial 
correlation. Simulation results show that the FER performance of this system decreases as the 
signal correlation between the antennas increases. The simulation results well match the 
theoretical analysis. 
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