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 With the technological advancements, distributed generation (DG) has 
become a common method of overwhelming the issues like power losses and 
voltage drops which accompanies with the leaf of the feeders of radial 
distribution networks. Many researchers have used several optimization 
techniques and tools which could be used to locate and size the DG units in 
the system. Particle swarm optimization (PSO) is one of the famous 
optimization techniques. However, the premature convergence is identified 

as a fundamental adverse effect of this optimization technique. Therefore,  
the optimization problem can direct the objective function to a local 
minimum. This paper presents a variant of PSO techniques, “comprehensive 
learning particle swarm optimization (CLPSO)” to determine the optimal 
placement and sizing of the DGs, which uses a novel learning strategy 
whereby all other particles’ historical best information and learning 
probability value are used to update a particle’s velocity. The CLPSO 
particles learn from one exampler for few iterations, instead of learing from 

global and personal best values in every iteration in PSO and this technique 
retains the swarm's variability to avoid premature convergence. A detailed 
analysis was conducted for the IEEE 33 bus system. The comparison results 
have revealed a higher convergence and an accuracy than the PSO. 
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1. INTRODUCTION  

The electricity system comprises electricity generation units, electricity consumption devices and a 

distribution grid or the distribution system where all the devices connected. The distribution system 

endeavors to have a smooth transportation of electricity from the generation to consumption, thus ensuring 

that all consumers have an agreed reliability and voltage quality. Most distribution networks are either radial 

or weakly meshed and it contributes a significant portion of total power losses in the whole power system due 
to higher load growth and the inherited high X/R ratio. The quality of the voltage level often falls in  

the direction of the feeder end and it could contribute a sudden severe system collapse. Even if it is possible 

to eliminate such issues with the introduction of a centralized power plant, the capital and maintenance costs 

remain unsustainable. 

Nowadays, DGs has come up as an appealing option to all the problems in distribution systems 

because of their benefits in terms of technical, economic and environmental [1, 2]. In [3], the DGs are 

classified as power generating sources that have a standard capacity of less than 50 MW, connected to 
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distribution systems. The primary purpose of DGs is the energy injection and its influences on the distribution 

system have been studied by number of researchers [4] and some of the studies have pointed that non-optimized 

placement and sizing of DGs might result to increased line losses and violations in voltage statutory limits. 

Strategically-positioned and controlled DGs will provide several benefits, such as increased voltage profile 

and loadability, enhanced stability, network upgrades [5, 6] and reduced line losses [7-9]. Also, in [10], a grid 

connected PV system for a campus micro grid was presented. 

Different kinds of optimization strategies have been used by integration of DGs in the distribution 

system. In [11] authors derived a collection of analytical expressions to determine the optimal size and the 

power factor of various types of DGs to realize the maximum loss reduction percentage and it comes under 

classical optimization algorithms. It does not consider convergence as a consequence of non-iterative, but in 
the case of complex problems analytical techniques may be unreliable due to less accuracy. Mixed Integer 

Linear Programming has been used in [12] to tackle the optimal size and the location of DGs for various load 

levels and topologies in order to minimize the annual investment and operation cost. This method will 

facilitate a less reliable solution through linearization and by overcoming the linearization flaw, Mixed 

Integer Non-Linear Programming [13] has brought a great precision. The authors in [14-18] adopted genetic 

algorithm to identify the optimal placement and size of DGs in different network systems. Genetic algorithms 

are computationally incompetent to deal with massive problems and easily achieve the state of premature 

convergence by trapping in to a local minima.  

The Tabu search algorithm relies on adaptive and receptive memory values. In [19], an effective 

hybrid approach for optimum assignment of active and reactive power injection was proposed using Tabu 

search and genetic algorithm. Nevertheless, numerous parameters of iteration and optimization are involved, 
which intensify the deterioration of their computational efficiency and the performance in preparing with  

the DG integration. Ant colony optimization (ACO) implies the finding of shortest path to a solution through 

the social behavior of insects [20]. ACO is arithmetically powerful and has no any convergence issues. 

However, the theoretical analysis is not easy and the time taken to reach the convergence is unknown. 

PSO has been tested and used by many researches for different types of problems. Authors in [21-24] 

used PSO variants for optimal placement and sizing of DG to improve the voltage profile and reduce the losses of 

the radial distribution network. PSO algorithm has the ease of implementation and enhances the quality of  

the optimal solution which requires fewer iterations than genetic algorithms. However, the final solution of 

this optimization technique may converge earlier, which is known as premature convergence and get stucked 

in local optima. 

As already stated, almost all the evolutionary optimization techniques are the legacy of the 

premature convergence and wrapped up in the local optimum. Therefore, in this paper CLPSO is utilized to 
solve the optimal sizing of the distributed generation. This technique helps swarm stability to be retained to 

avoid premature convergence. Voltage stability index (VSI) is used to reduce the search space of the optimal 

DG integration location by removing the buses which have the index value above 0.9. 

 

 

2. RESEARCH METHOD  

2.1. Problem formulation 

2.1.1. Objective function 

The main objective of allocating DGs in a distribution network is to get the maximum feasible benefits by 

enhancing the system’s efficiency in terms of improving the power loss reduction and the voltage profile.  

The problem could be mathematically formulated as in (1), with an objective of minimizing the loss of real power. 
 

            ∑      
 
     ∑      

    
 
                 (1) 

 

where       and    is the    branch current and the branch resistace respectively. 

 

2.1.2. Constraints 

Optimization algorithm is subjected to the constraints as defined below. 

 

A. Voltage constraint 

Absolute value of the voltage magnitude at each node must be stationed within their allowable 

ranges in order to maintain the system’s power quality. It is defined as below. 
 

|    |       |    |               (2) 

 

where N is the number of buses in the system. 
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B. DG capacity constraint 

The connected DG unit’s active and reactive power generation must be lower than the base system’s 

active and reactive power loads. Also, it should be lower than the DG’s maximum generation capability. 

Mathematically, this constraint was defined as follows: 

 

                       (3) 

 

C. Thermal limit constraints 

The thermal limit must not exceed its limits. 
 

                       (4) 

 

2.2.  Particle swarm optimization 

PSO algorithm is one of the evolutionary computation techniques, which is a population-based 

search algorithm, premised on the simulation of the social behavior of the birds within a flock, introduce 

originally by Kennedy and Eberhart in 1995 [25]. This stochastic algorithm works in parallel with singulars 

to examine appropriate regions in a multi-dimensional environment, where the optimal solution is sought. 

The singulars are called particles with zero mass and volume. The population is referred as the swarm and 

each particle in the swarm locomote towards the optimal solution with an adaptive velocity adjustment 

throughout the process. The velocity   
  and the position   

  are updated as following (5) and (6). 

 

           
       

          
  (      

    
 )          

  (         
 ) (5) 

 

           
    

             
  (6) 

 

where       
    

      
   is the position of     particle,        

    
      

   is the velocity of     particle, 

               
        

          
   is the previous personal best of     particle and,        

                       is the overall best of the swarm.    and    are the weightings of stochastic 

acceleration coefficients and      
  is a random number generated in the range of      .   is the inertia 

weight and it balances the global and local searching capability. All the particles attempt to improve  

the PSO’s performance by updating their velocities and positions according to the personal best and  

the global best, plus varying the other parameters in different acceptable regions. However, PSO inherits  

the premature convergence and it’s the main weakness as an optimization technique. 

 

2.3. Comprehensive learning particle swarm optimization 

In PSO technique, all the particles learn from their personal best and the swarm’s global best 

simultaneously. Only the global best of the swarm could be viewed as the social learning method and a quick 

convergence could be expected due to having one global best. Even though the current global best is far from 

the optimum global best, all particles learn from the current global best. Consequently, the particles could be 

effortlessly trapped to a local optimal point. 
In CLPSO technique, all the particles’ personal best values are pooled, then two of them are used to 

update the personal best of one particle and it will explore more capability of un-trapping in to a local 

optimum point. The graphical representation of updating personal best to get rid off from local optimum is 

illustrated in Figure 1. The velocity updating function [26] is presented in (7). 
 
 

 
 

Figure 1. Graphical representation of updating personal best to get rid off from local optimum 
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  (          

    
 ) (7) 

 

where           
  is the selected particle’s personal best values and          

    
      

   is particles which 

are the    particle should follow. The velocity upgrading process verdict is determined by evaluating  

the randomly generated decision variable and the decision probability    . If the decision variable is larger 

than the decision probability, the particle learns from its own personal best and otherwise it will learn from 

another selected particle’s personal best. The decision probability can be calculated using the (8).  

The decision probability for 30 particles are shown in Figure 2. 

 

             (
   *(

         

     
)  +

         
) (8) 

 

 

 
 

Figure 2. Decision probability of each particle in the swarm 

 

 

If the decision variable is smaller than the decision probability, two random particles would be 

chosen from the pool and compared the fitness value of each particle’s personal best. The best personal best 

to use in learning method would be preferred in the comprehensive learning strategy. According to the new 

learning, personal best particle would start its searching process in the search space. The methodology of 

CLPSO is illustrated in Figure 3 and a brief outline of CLSPO is given below. 
Step 1 : Run the load flow without integrating DGs and record the nodal voltages line currents of the test 

network. 

Step 2 : Initialize the parameters of CLPSO algorithm (i.e. number of iterations, number of particles,  

social coefficient  , minimum and maximum limits of inertia weight             , maximum no 

of runs,     . 

Step 3 :  Construct randomly initialized swarm matrices for the position and velocity and run the base case 

power flow and compute the active power loss (objective function) using (1), nodal voltages and line 

currents of the network. 

Step 4 : Update the position (   
 ) and velocity (   

 ) of the particle. Test on the network constraints 

consisting of velocity and position. If all the constraints are satisfied, proceed to Step 5; otherwise 
update the refreshing gap (STAG) by 1.  

Step 5 : Identify the best personal experience (     ) of each particle and the best global experience 

(𝐺    ), out of every particle in the swarm. 

Step 6 : Each particle has a STAG value and it is the entry-pass for comprehensive learning. If there is no 

improvement in objective function of each particle during STAG number of iterations, particle will 

enter to the comprehensive learning. 
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Figure 3. Flow chart of CLPSO methodology 

 

 

3. RESULTS AND DISCUSSION 

The widely used standard IEEE 33 bus system was adopted to implement CLPSO based optimal 

placement and sizing algorithm and simulated on MATLABTM simulation platform. It is rated at 12.66kV 

with a total demand of 3.7MW and 2.3MVar. The single line diagram (SLD) is shown in Figure 4.  

All the DGs were modelled as static DGs with unity power factor. Initially, the active power integration was 

started by single DG and then increased up to three DGs. 
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Figures 5 and 6 present the voltage profiles, convergence characteristics of fitness function value 

and the system power losses obtained for PSO and CLPSO algorithms respectively. In all the graphs,  

PSO and CLPSO results are shown in blue and orange colour respectively. The results for optimal sitting and 

sizing problem of distributed generation are described in Table 1. 

When considering the Figure 5(a), 5(c) and 5(e), it could be seen that the voltage profiles of CLPSO 

were improving better than PSO. However, a significant improvement could be seen with the increment in 

number of DGs. The Figures 5(b), 5(d) and 5(f) present the convergence characteristics of fitness function, 

which evaluate the speed of convergence of the algorithm with different number of DGs. It was noticed that, 

in both the iterations and fitness function value, the PSO algorithm was converged before CLPSO algorithm. 

That is, CLPSO algorithm eliminates the premature convergence, which inherits by PSO algorithm. 
The total active power loss reduction for CLPSO and PSO is shown in Figure 6. It could be 

observed that CLPSO has gained more loss reduction than PSO. The two algorithms were performed up to 10 

runs and the best case was selected. Out of the 10 runs, the maximum (worst), the minimum (best) and  

the average of the objective functions to improve loss reduction in test network are illustrated and compared 

in Figure 7. The best and the worst are from the CLPSO and PSO respectively. Looking at the standard 

deviation results of the total active power loss of each algorithm, it reveals that the value for CLPSO is less 

than PSO. This is an indication of the uniformity of the output of CLPSO and the less uniformity of PSO. 
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Figure 4. SLD of IEEE 33 bus system 

 

 

 
 

(a) 1 DG Voltage profile 

 
 

(b) 1 DG convergence characteristics 
  

 
 

(c) 2 DGs voltage profile 

 
 

(d) 2 DGs convergence characteristics 
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(e) 3 DGs voltage profile 

 
 

(f) 3 DGs convergence characteristics 

 

Figure 5. Voltage variation and convergence characteristics of CLPSO and PSO  

 

 

Table 1. Performance analysis of the IEEE 33 bus system after DG installation 
Algorithm 1

st
 DG 

Location 

1
st
 DG 

Size 

(MW) 

2
nd

 DG 

Location 

2
nd

 DG 

Size 

(MW) 

3
rd

 DG 

Location 

3
rd

 DG 

Size 

(MW) 

PLoss 

(kW) 

QLoss 

(kVar) 

PLoss 

Reduction 

(%) 

Base Case - - - - - - 210.0 143.0 - 

PSO 6 2.42 - - - - 102.330 74.995 51.27 

11 0.96 31 0.95 - - 82.995 56.690 60.49 

29 1.08 25 5.85 9 1.04 73.630 50.600 64.94 

CLSPO 6 2.43 - - - - 102.120 75.000 51.40 

30 1.10 13 0.89 - - 81.720 55.975 61.10 

11 0.93 32 5.85 24 1.05 70.300 48.775 66.54 

 
 

 
 

Figure 6. Loss reduction of the sytem 

 
 

Figure 7. Statistical parametrs of algorithm results 

 

 

4. CONCLUSION  

In this paper, CLPSO technique is utilized to determine the optimal placement and sizing of  
the DGs, which uses a novel learning strategy, as CLPSO can eliminate the premature convergence of  

the PSO technique. It uses all the particles’ historical personal best values to update the velocity component 

of each particle. The simulation results show that, while both approaches have chosen almost the same 

locations for the DG integration, CLPSO is performing better in maximizing loss reduction compared to 

PSO. They are 66.54% in CLPSO and 64.95% in PSO with three DGs. Moreover, all the CLPSO simulations 

converge after the PSO simulatons and could be introduced as execlusion of premature convergence.  

The obtained standard deviation for CLPSO is less than the PSO and it points out the quality and the 

uniformity of the results obtained in all the runs. Finally, the overall paper presents the productiveness of 

CLPSO in optimal placement and sizing of DGs than the PSO. 
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