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Abstract 
In this study we have offered an investigation of DMF-CPVAs setup for isolating torsional 

vibration from engine. The simplified mathematical model of DMF-CPVAs setup is built based on the linear 
theory, the performance of the setup is analyzed, and the result shows that using CPVAs on the DMF 
leads to an advantage of isolation vibration, instead of just damping vibrations at a specific frequency, 
could dampen vibrations over a range of frequencies.  
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1. Introduction 

In the car engine, torsional vibrations in the crankshaft has been posed as a problem 
since the torque from the cylinders are delivered in pulses to the crankshaft. This causes the 
crankshaft to rotate with non-constant speed. These torque pulses are not desirable in the 
engine because of vibrations that cause even failure of powertrain components. For some years 
now a special type of flywheel, called the Dual Mass Flywheel (DMF), has been used in 
powertrains of cars to protect the transmission and the rest of the driveline from engine 
vibration, see the work of Albers [1]. However DMF remove the resonance frequency below the 
idle speed, they are tuned to a particular frequency and will not work at all engine speeds.  

The Centrifugal Pendulum Vibration Absorbers (CPVAs) is particularly useful for 
engines since it is not dependent on frequency, but the order of the applied torque. The CPVA 
can therefore reduce vibrations in the entire engine speed range [2]. But the problem 
automotive manufacturers face today, is that engines generally tend to become smaller in size 
and have fewer cylinders, while the power output tend to increase. In order to solve the 
weakness of DMF and CPVA, the CPVAs are used on the DMF. In this paper, the linear 
torsional damping characteristic of the DMF-CPVAs setup is investigated. 

 
 

 
 

Figure 1. The structure of DMF-CPVAs setup 
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2. Derivation of Equation of Motion 
A DMF from German manufacturer LuK is shown in Figure 1. The leftmost part is the 

secondary flywheel, connects to the clutch and transmission The arc spring connects the 
primary flywheel to the secondary flywheel,. The CPVAs (arc-shaped on the middle carrier) are 
attached to a separate carrier, which is attached to the secondary flywheel. In this model, the 
number of CPVAs is eight (four on each side of the carrier). The primary flywheel, rightmost in 
the picture, attached to the crankshaft.  

For deriving the equations of motion, the mathematical model of the DMF-CPVAs setup 
is simplified, assuming CPVAs work synchronously. The equation of motion equipped with a 
torsional, frequency tuned vibration absorber, which itself has a circular path CPVA attached to 
it, will be derived using Lagrange’s method. Referring to Figure 2, the kinetic and potential 
energy will be derived for the system, and will be used to get the equations of motion. Relevant 
physical parameters labeled in Figure 2 are described in Table 1. 

 
 

 
 

Figure 2. Schematic of DMF-CPVA setup 
 
 
The total kinetic energy of the system (Tt) consist of that of the 1st flywheel, T1, the 2nd 

flywheel T2, and the CPVA, Tp. Tt =T1+ T2 +Tp. Defining the individual kinetic energies, we have,  
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where, r

v& the time rate of change of the position vector from the center of the torsional 
absorber to the pendulum center of mass. We will derive the position vector using the 
coordinate system in Figure 2. We can see that ˆ ˆR e eR Lr L= +

v . Grouping all the terms, letting 

where  is the pendulum’s radius of gyration about its center of mass, and performing the dot 
product gives 
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Next, the potential energy in the system consists of the torsional spring only, and can be  

found to be 
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Finally, the generalized forces, for the 1st flywheel, 2nd flywheel, and absorbers, which 

include the damping and the forcing terms, can be found to be 
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Terms in the generalized forces are as follow: cp is the viscous damping in the 

pendulum bearing, c is the 1st flywheel damping, c is is the damping on the 2nd flywheel. To is 
the mean torque applied to the rotor, and Tsin(nt) is the fluctuating torque applied to the rotor. 
Now, Lagrange’s method can be applied to the kinetic energies and generalized forces to obtain 
the system’s equations of motion. Taking 
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gives, 
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as the equation of motion for the 1st flywheel. Proceeding in a similar manner for the  

and  coordinates yields, for the 2nd flywheel’s equation of motion, and for the pendulum, 
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We have derived the equations of motion for the system previously described and the 

next step is to perform some linear analysis. 
 
 

Table 1. Definition of Symbols in Figure 2 

Symbol Physical Meaning 

 Rotor angle of the 1st flywheel 

 Rotor angle of the 2nd flywheel 

 Rotor speed of the DMF 

Φ Torsional angle of the 2nd flywheel 

 Absorber’s swing angle respect to the 2nd flywheel 

R Distance from the 2nd flywheel to the absorber’s center of rotation 

L Distance from the absorber’s center of rotation to its center of mass 

 Pendulum’s radius of gyration about its center of mass 

k Spring stiffness 

J1 Rotational inertial of the 1st flywheel 

J2 Rotational inertial of the 2nd flywheel 

Jp Rotational inertia of the pendulum 

m Mass of the pendulum 

 
 
3. Linear Analysis 

In order to perform linear analysis on the system derived in the previous section, some 
assumptions must be made. First, we assume small pendulum absorber angles so that the 
sines and cosines can be approximated.�1. We also assume small oscillations about a mean 
speed for the DMF [3]. 

1ta h= W +
, 2tb h= W +

 
Using these assumptions in the full non-linear equations and keeping only the linear 

terms yields, 
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for the linearized equation of the 1st flywheel, the 2nd flywheel’s equation of motion, 

and for the pendulum separately. Now that the system is linearized, setting the damping and 
mean torque to zero allows us to assume a harmonic response for each of the degrees of 
freedom and solve for their respective amplitudes, 
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and the system natural frequency without CPVAs, 
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Plugging the above assumptions into the linearized equations of motion, assuming a 

point mass for the absorber to eliminate its moment of inertia, and solving for the amplitudes 
gives: 
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Take a four-stroke engine as study subject, a torque pulse (also called power-stroke) is 

delivered once every two revolutions of the engine, from every cylinder. In a four-cylinder 
engine, the cylinders excite the crankshaft twice every revolution, and therefore the torque has a 
dominant second order harmonic component. Parameter value k=20N/°, T=40N, R=0.1m, 
L=0.25m, m=0.5kg, J1 =0.2kgm2, J2=0.08 kgm2, Ω=300r/min. The amplitude of 2nd flywheel can 
be seen from Figure 3. 

 
 

 
 

Figure 3. Amplitude of 2nd disk versus σ for different tuning values. 
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Since the absorber is tuned to one frequency, if the tuning order equal to the excitation 
order, the amplitude of the 2nd flywheel goes to zero at that frequency, as shown in figure 3. 
Under the a little detuning, the resonance happens around σ=0.25, which is under idle operating 
speed of engine. With the speed increasing, the torsional vibration angle reduces to zero.  
 
 
4. Vibration Isolation Performance 

To further investigate the high frequency resonance for the DMF-CPVAs setup system, 
neglecting damping items, the three natural frequencies of the system were solved for using the 
standard method. K-2M=0, and solving for the    

 
 

n



  
Figure 4. DMF-CPVAs setup system natural frequencies vs. rotor mean speed 

 
 

For tuning the excitation order, which is shown in a Campbell diagram in Figure 4, we 
know one frequency is at zero, and the other two are plotted vs. the mean rotor speed, for 
different CPVA tunings. The forcing frequency, n is also plotted in Figure 4, and it is obvious 
that an intersection of the forcing line with a natural frequency line indicates a resonance. There 
are three sets of the two natural frequencies plotted in this Figure 4, one indicates a highly 
undertuned CPVA, one a highly overtuned CPVA, and one an exactly tuned CPVA. The case 
for the exactly tuned CPVA is not labeled and is the lines which almost exactly follow the forcing 
function. 

Campbell diagram in Figure 4 exhibit a classical eigenvalue veering behavior [4]. The 
resonance happens around 300 r/min, no resonance happens in engine operating speed. We 
can see DMF-CPVAs system performs good isolation effect, and removes the resonance which 
happens in higher frequency.  

Plotted in Figure 5 is the amplitude of the rotor for three different absorber setups using 
the linear theory as a function of frequency, torsional absorber only, DMF system, and CPVA 
only, these systems all have the same total rotary inertia. As is visible from the Figure, the 
torsional absorber is the least effective setup, having an anti-resonance at one frequency only, 
the DMF setup absorbers torsional vibrations more effectively at lower frequencies than the 
CPVA only setup, but does have a resonance at higher frequency which could be detrimental to 
performance. The CPVA only system has a resonance at =0 just like the other two, but has the 
benefit of no more resonances at high frequencies, but the CPVA only system can’t be built as 
same  rotary inertia as DMF on crankshaft in practice. 
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Figure 5. Rotor amplitude vs. frequency for three absorber setups. 

 
 

5. Conclusions and Future work 
In the work, the equations of motion for DMF-CPVAs setup model were established. It 

should be pointed out though, that the model was much simplified, especially on the secondary 
side. The clutch, gearbox, differential, driveshaft and other parts are not built and significant 
effects might be missed. According to linear analysis, the torsional vibration isolation 
performance was investigated under different tuning modes, and the result shows the 
implementation of CPVAs on the DMF that will account for additional total torsional vibration 
reduction effect. Further work could also include the nonlinear analysis for DMF-CPVAs setup to 
study existence and stability of response and performing experimental tests in a car. 
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