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Abstract 
Challenging environmental factors combined with high and turbulent winds make serious 

demands on wind turbines and result in significant component fault rates. In this paper, an early fault 
diagnostic research is conducted upon wind turbines. Firstly, the SCADA (Supervisory Control and Data 
Acquisition) system is used to analyze the units’ long-hour operating data, preparing for the further 
modeling work. Then the MSET (Multivariate State Estimation Technique) is adopted to estimate the 
temperature of the gear box and to obtain a result of high accuracy; with the Moving Window Calculation 
(MWC), the residual value between the estimated value and the real value is studied to get the dynamic 
trend of its average value; according to this trend in training, we define the threshold region of the residual 
mean value. Considering a man-made deviation in the observation vectors, faults of the gear box are 
simulated and studied. When the residual mean value curve exceeds the setting thresholds, an alert will be 
given to remind the operators of hidden problems in the unit. Research shows that this early diagnostic 
method is quite effective in detecting the abnormal performance of wind turbines in a real-time manner. 
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1. Introduction 

Wind power, one of the green, safe and low-carbon energy, is so fast-developing in 
generating electricity that it has become the fourth major power source after coal, water and 
nuclear. It is also the only renewable power resource that owns over one hundred million 
kilowatt global installed capacity apart from water. The development of wind power brought 
about a series of problems at the same time, with the maintenance of wind turbines being the 
foremost. As the main components of a large-scale wind turbine are fixed at a height of over 
one hundred meters, special equipment like cranes are needed in the repairing of impellers, 
gear boxes and generators. When it comes to the units located at sea, other important factors 
like the boats’ chartering and weather should also be considered. As to a wind plant of which 
the designed life-span is twenty years, the maintenance cost takes up 10-15% of the total 
income; while the ratio is 20-25% to the one on the sea. 

Owing to the ignorance of wind turbines’ features and the lack of management 
experience, the testing and repairing system of thermal plants are still widely used in the wind 
plants in our country. The maintenance of thermal power equipment mainly covers its status 
supervision and diagnosing methods (life-span of the metal, cavitations, scaling etc.); while the 
faults in a wind turbine are caused by mechanical stress and the aging of electronic parts for 
they are the major components of a wind turbine unit. In fact, a wind turbine approximates to 
electronic equipment running under poor condition, so it is rather rational to discuss the fault 
diagnosing methods and maintenance system combing its own electronic characteristics. The 
condition monitoring and fault diagnosing of wind turbines is a process to supervise, estimate 
and analyze the operating data of the major components (impellers, gear boxes, generators, 
transducers etc.), so as to detect faults promptly. Using related condition monitoring techniques, 
we can master the turbines’ running state in a real-time way. Thus, serious damages to the 
equipment can be avoided in advance and the maintenance cost will be greatly reduced. 

This paper proposes a state estimation of the gear box’s temperature based on the 
SCADA data and the MSET. Then the MWC residual statistical method is adopted to analyze 
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the results and obtain its mean value curve. Whenever this curve exceeds the setting 
thresholds, a system alarm will occur. 
 
 
2. Condition Monitoring and Fault Diagnosing of Wind Turbines 

A wind turbine, a complex system, consists of several subsystems: tower, wind wheel, 
wheel hub, pitch system, gearing system, yaw, brake, generator, variable-frequency system, 
master control system, variable-voltage and grid-tied system. Each subsystem is made up of 
several parts. These subsystems cooperate with each other to conduct complicated operations. 
Besides, the dynamic characteristics of a wind turbine include both continuous and disperse 
parts. Being greatly influential by some external uncontrollable factors, such as the wind’s 
speed, direction and altering frequency, the turbine is located in so complex a working condition 
that it performs differently accordingly. 

The present fault diagnosing methods applied in wind turbines are listed as follows [1]: 
the diagnostic method based on statistical data, the one based on time sequence prediction, the 
one model controlling, the one based on vibration analysis, and the one adopting other testing 
techniques (sound transmitting [3], ultrasonic- electric capacity liquid level test [6]). Document 
[3] adopts the BP neural network to construct the model of gear box and generator, and uses 
the Multi-agent method to analyze the diagnostic results of different components in order to 
demonstrate the overall operating state of the unit. However, the modeling process upon neural 
network theory takes rather long a time for training, while training samples are always difficult to 
select. And the signals’ acquisition speed can hardly meet the needs of the analysis of high-
frequency vibration. Documents [4-6] summarize the various ways of condition monitoring for 
wind turbines in the recent years. Document [7-10] constructs the hardware experimental 
platform for gear box and generator. Though it analyzes the vibration signals using the wavelets 
analysis method, the model is quite different from the practical state. Document [11] diagnoses 
the faults based on an automatic analysis of the SCADA data. It does not correlate some key 
factors, such as  vibration scope, temperature, power and start-stop records, giving rise to a 
relatively separation of study contents and diagnostic results. 

To monitor the condition of wind turbines, a dynamic model of its normal operation 
should be constructed, basing on which the early signs of abnormal acts are tested. Considering 
the random change of wind speed, the great turbulence of external surrounding factors 
(temperature), the great differences between different units, the close coupling relation among 
all the mechanical and electric components, it is difficult to apply traditional monitoring theories 
and methods in wind turbines. 

The non-linear modeling is a method based on the operating data of the object. By 
analyzing and processing these data, the dynamic-characteristic model is constructed, which is 
the so-called data-driven modeling method. With plenty of operating data from the SCADA 
system, the turbines’ condition can be monitored to discover early faults. 
 
 
3. SCADA Data Analysis in Wind Farms 

A large wind farm is always equipped with the SCADA system. Its basic function is to 
record the massive original data at a fixed time interval (generally 10s or 10 min) in the 
supervisory computers of central control room. These data mainly covers output energy, state 
and alarm information, fault information, transducer parameters and so forth. The quantity of the 
SCADA data is so big that the monthly records of a single unit is as many as hundreds MB. At 
present, the SCADA data in wind farms are merely used in monitoring the data, generating the 
report forms and recalling accidents after a fault occurs. Recorded in computers, the massive 
data are regularly copied to discs without being organized and analyzed, the reasons are as 
follows: 

 (1)  The large number of SCADA data. For instance, the daily records of a single unit 
are over 10 MB when recording every 10s. For a large wind farm that consists of hundreds 
units, the huge quantity of data will impose higher standard on the SCADA system’s efficiency. 

 (2) The features of wind turbines’ operating. In wind-power generating, the source of 
energy is the natural wind, random and unpredictable. With the changes of wind, nearly all the 
data recorded by SCADA will change accordingly, such as the rotating speed of wheel, the 
vibration accelerated speed, the generating power, the temperature of gear boxed. These 
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random data bring great obstacles to the acquisition and further processing of information. 
Besides, measuring errors of transducers and other equipment make it even harder to correctly 
analyze the data. 

 (3) Effective theories and methods are needed to separate and extract the close 
relevance among parameters. Since the change of a single parameter is random and irregular, 
it is impossible to provide enough operating information only by observing each parameter in an 
isolated way. 

 (4) Wind turbines’ characteristics are different from one to another. Even located in the 
same wind farm, two turbines of the same type may have totally different features, for they are 
fixed and installed in different positions. Take the vibration signals in the same transmitting 
chain-a unit’s wide-range vibration may be acceptable according to operating experience, while 
a little vibration is likely to cause abnormalities to another unit of the same type. So it is difficult 
to conclude a common rule or equation to analyze the SCADA data, which makes it 
considerable work. 

In fact, the wind turbines’ operating state and their dynamic characteristics are shown in 
the massive SCADA information. This paper extracts the fault code and the related records from 
the processed SCADA data. By studying the relevance among SCADA data, it then constructs 
the inherent non-linear model with multiple variables under normal operating state. 

When an abnormality occurs in the unit, the inner relevance among multiple variables 
will be broken. The non-linear multi-variable state estimated value will deviate from the 
measured value, which will increase the residual value. In order to monitor the unit’s state, we 
must detect even the slightest abnormalities or changes promptly. Figure 1 shows the concrete 
flow. 

 
 

 
 

Figure 1. The fault diagnostic method based on the technique of statistical moving window 
 
 
4. Basic Principle of Early Alert Method 
4.1. MSET Model Construction 

The MSET is a multi-variable state estimating technique first proposed by Singer [13]. It 
is now widely used in the nuclear power plant sensor calibration, electric product life-span 
prediction and software aging research [14-16]. The principle of MSET is as follows. It first 
studies the history data of normal working state; then it defines the relations among parameters; 
after that, an inherent nonlinear model with multiple correlated variables is constructed. This is 
how the state estimation works. 

A certain physical process or operating data of a device can be represented by a matrix. 
This process or device consists of n variables and m states (m moments). The column vector is 
the operating data of all the related variables at a fixed moment and the row vector shows 
certain variable’s value when the process or device is at State m. Let us suppose, the n related 
variables observed at Time i are referred to as the observation vector: 

 
T

n ixixixiX )](,),(),([)( 21 
 (1) 
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Under normal operating state of the process or device, m historical observation vectors 
are collected to construct the memory matrix D, denoted as: 
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Each observation vector in the memory matrix represents a normal operating state of 

the process or device. By selecting m historical observation vectors from an extended period of 
normal state properly, the subset space spanned by matrix D can be taken to represent the 
whole dynamic working condition of the process or device. Thus, the construction of memory 
matrix D is substantially a procedure of learning and memorizing the normal behaviors of the 
process or device.  

During subsequence operation, the input to the MSET at each time step is a new 
observation vector Xobs and the output from the MSET is a prediction Xest for this input vector 
for the same moment in time. For each input vector Xobs, MSET will produce an m-dimensional 
weight vector W 

 
T

1 2[ ]mw w wW   (3) 
 
With 
 

est 1 2(1) (2) ( )mw w w m        X D W X X X  (4) 
 
Equation (4) means that the estimate of MSET is a linear combination of the m historical 

observation vectors in the memory matrix D. Then the weight vector is calculated and optimized. 
The residual between MSET estimate and the input is  

 

obs est ε X X  (5) 
 
The weight vector [17, 18] is constructed as follows: 
 

)()( obs
1 XDDDW TT  

)10(     (6) 
 
 is a nonlinear operator used to replace the regular multiplying operator in matrix 

multiplication. 
There are many optional nonlinear operators to choose from [19], with the Euclidean 

Norm (DIST), the City Block Distance (CITY) and the Linear Correlation Coefficient (LCC) being 
the foremost. In this paper, the nonlinear operator is chosen as the Euclidean distance between 
the two vectors 
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When two observation vectors are the same or similar, the distance between the 

vectors will be zero or near zero. When one vector is very different from the other, the distance 
between them will be great and the result of the nonlinear operator will be large. The weight 
vector in (6) reflects the similarities between the MSET input vector Xobs and the m historical 
observation vectors in the memory matrix D. 

With (4) and (6), the final estimate of the MSET model for the process or device is  
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T 1 T
est obs( ) ( )    X D D D D X  (8) 

 
When the process or device works normally, the input observation vector of MSET is 

most likely to be located in the normal working space that is represented by the memory matrix 
D, in that it is similar to some historically measured vectors in the memory matrix. As a result, 
the estimate of MSET will have a high accuracy. When problems arise with the process or 
device, its dynamic characteristics will change, and the new observation vector will deviate from 
the normal working space. In this case, the linear combination of the historical vectors in the 
memory matrix will not provide an accurate estimate of the input and the residual will increase in 
magnitude. 
 
4.2. Moving Window Residual Statistical Method 

 The biggest advantage of the Moving Window Residual Statistical (MWRS) 
method lies in that it enables distribution of residual to be shown continuously, basing on which 
whether a variable value is normal or not is judged. Under the same accuracy level, the MWRS 
method can provide the earliest sign of developing faults. Through this method, the paper 
eliminates unknown factors and random disturbances (such as transducers’ measuring errors) 
of an operating wind turbine and promotes its reliability as well. By a proper selection of the 
window’s width, the successive residual statistical characteristics are monitored promptly, which 
improves the stability of the device and deduces the chances that error alarms happen. When 
an abnormality occurs to the unit, these dynamic models can detect even the slightest changes 
of parameters, so as to diagnose the faults at a early stage. 

If, during a certain period of time, the residual sequence of the gear box’s temperature 
from the MSET model is: 

 

GT 1 2[ ]N  ε    (9) 
 
A time window with width N is adopted to calculate the moving average or mean value 

and standard deviation for the N successive residuals in the window 
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Then assume that the residual average fault threshold is YE , the maximum of residual 

average of MSET model under normal condition is VE
, so the fault threshold of gear box EY is: 

 

VY EkE 1
 (11) 

 
In this equation, k1 can be chosen based on operating experience. 
When the residual of MSET model exceeds a set threshold, an alert will be given to 

remind the operator of the potential threatens to the gear box’s safe operating. 
 
 
5. Model Construction of Gear Box’s Temperature Based on SCADA Data 
5.1. Selection of Variables 

All of the operating data of wind turbines are recorded in the SCADA system. It is a 
computer-based system which is aimed to realize the automatic scheduling and planning of 
working process. By supervising and controlling the devices’ state, the SCADA achieves the 
functions of data acquisition, device controlling, parameter measuring and regulating, and 
information alerting. 

In this paper, the wind turbine is manufactured by Vestas and its concrete parameters 
are: rated power 0.9MW, cut-in wind speed 3mps, cut-out wind speed 25 mps, rated wind speed 
15 mps, over-voltage protection setting value 1.2p.u, low –voltage protection setting value 
0.85p.u.. The SCADA  records 126 operating parameters and state information every 10 min: 
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the former includes time tag, active power, reactive power, bearing temperature and oil 
temperature in gear boxes, cabin temperature, external temperature, fault codes, hydraulic-
pressure oil temperature,  three stator voltage and current, rotated speed of generator and so 
on; while the latter consists of start and halt of unit, overheating of generator, pitch system fault, 
generator fault, frequency-convertor fault, hydraulic-pressure system fault, gear box fault and so 
on. 

Following a review recorded by SCADA, the parameters related to the bearing 
temperature of a gear box are chosen to construct its observation vector Xobs of MSET. 

(1) Active power (P): P is closely related to the bearing temperature of a gear box. 
When P increases, the load of a gear box will aggrandizes which leads to an increase in the 
gear box. P is influenced by wind speed, rotated speed of gear box, yaw angle. 

(2) Wind speed (u): The variable speed turbines are studied in this paper, which pursue 
the best usage of wind power by achieving the optimal tip speed ratio. The higher the wind 
speed is, the faster the gear box rotates, and the higher its temperature will be. 

(3) Rotated speed of gear box (U): The gear box has the function to accelerate or 
decelerate the speed. As U is closely related to turbines’ P, a higher U is always accompanied 
with a bigger P. 

(4) Yaw angle (A): The directions of natural winds are changeable and unpredictable. In 
order to enhance wind power’s efficiency, a function as a significant parameter to adjust 
turbines’ direction to meet the wind, this has a profound influence on system’s safety and 
efficiency.  

(5) Bearing temperature of gear box (Tgear): Operating under severe working condition 
and heavy loads for long hours, the bearings of gear boxes are likely to suffer faults and 
damages. The frequent damages arise mainly from noises, temperature, vibrations, lubrication 
problems and other bad states. 

(6) Oil temperature of gear boxes (Toil): With a temperature sensor in the gear box, the 
Toil must be higher than 0� (it varies according to the requirements of lubrication oil), and then 
heated to over 10� to operate. In normal working states, the oil pump continuously ejects oil 
into gears and bearings. When Toil is higher than 60°C, the oil cooling system starts to function 
and the heated oil is transmitted to an external exchanger to be cooled by natural wind or water. 
When Toil is below 45�, the oil cooling loop is cut, and the cooling process stops. The over-
heated Toil is always caused by the long hours of full-loaded operating. 

(7) Cabin temperature (Tcabin): Tcabin is also a factor that influences the gear box 
temperature. When Tcabin is too low, the mechanical components can hardly operate properly; 
while too high a Tcabin will shorten the electric components’ life span. 

(8) External temperature (Tc): Because the local temperature that the wind turbine 
experiences changes greatly in the short term (from day to night for example) and in the longer 
term (weeks to month) due to passing weather systems and seasons it must be taken explicitly 
into account. Thus, different Tc will produce different gear box temperature. 
 
5.2. SCADA Data Record Analysis 

As wind turbines are greatly influenced by external factors (temperature, wind speed 
etc.), this paper probes into the SCADA data of Jan.2011 of a certain wind turbine. Figure 2 
shows the 721 10-minute data from 17:20:00 22nd Jan. 2011 to 17:20:00 27th Jan. 2011. 

Tables 1-6 list the SCADA operating records of which the power is less than 0 during 
this period. In these charts, every fault code is corresponding to a fault reason. The 0 fault code 
represents no fault. As to the state of the wind turbine, 0 refers to shut-down and 1 means 
normal operating. 

In Table 1, the high-wind fault code is alerted when the wind speed is 23.7 mps and 
19.7 mps. But under neither condition does the wind speed reach the cut-in wind speed. The 
reason lies in that the wind speed is 24.1 mps at 5:20:00 23rd Jan. 2011and reaches 25 mps 
during 5:20:0 to 5:30:00, which makes the turbine cut out. Because of the self protection and 
system delay, a 144 fault code is alerted at 5:30:00 and 5:40:00 23rd Jan. 2011. 
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Figure 2. Historical curve from 17:20:00 22 th Jan to 17:20:00 27 th Jan 

 
 

Table 1. Node specific offline parameter SCADA data records 1 
Num Data Time Wind speed Active power Fault code Fault reason 

1 2011/01/23 5:20:00 24.1  0  

2 2011/01/23 5:30:00 23.7 11.8 144 
Over wind 

speed 

3 2011/01/23 5:40:00 19.7 148.7 144 
Over wind 

speed 

 
 

Table 2. SCADA data records 2 
Num Data Time Wind speed Active power Fault code 

1 2011/01/24 9:40:00 5.9 -19.7 0 
2 2011/01/24 9:50:00 7.9 -22 0 

 
 

Table 3. SCADA data records 3 
Num Data Time Wind speed Active power Fault code 

1 2011/01/24 11:40:00 5.4 -7.6 0 
2 2011/01/24 11:50:00 5.1 -16 0 
3 2011/01/24 12:00:00 4.5 -15.1 0 

 
 

Table 4. SCADA data records 4 
Num Data Time Wind speed Active power Fault code 

1 2011/01/24 17:20:00 4.9 -20.5 0 
2 2011/01/24 17:30:00 3.6 -22 0 
3 2011/01/24 17:40:00 3.9 -21.2 0 
4 2011/01/24 17:50:00 6.9 -21.4 0 
5 2011/01/24 18:00:00 6 -3.6 0 
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From Tables 2-4, we can see that faults codes are 0. It infers that the three shut-downs 
are caused by manned reasons instead of faults and that is the so-called manned shut-down. 
Generally speaking, the reason of a manned shut-down is the power grid imposes a limit on the 
generating amount of wind farms, which stops the normal operating of the turbines. In Table 4, 
both the wind speeds at 17:30:00 and 17:40:00 24th Jan. 2011 are lower than the cut-in speed 
and the turbines are not generating. 

In Table 5, the first two shut-downs are caused by manned operations and the rest are 
because that the automatic yawing makes the active power less than 0. Chart 6’s fault code 144 
is because that the wind speed at 7:30:00 27th Jan. 2011 reaches 24.1 mps, which 
approximates the cut-out speed and triggers the fault code at the next time due to the system 
delay. 

Table 6 shows that four shut-downs occur from 17:20:00 22nd Jan. 2011 to 17:20:00 
27th 2011. All of them are manned shut-downs. In the mean time, there are no gear box faults 
and repairing records in Jan. and after Jan. 

 
 

Table 5. SCADA data records 5 
Num Data Time Wind speed Active power Fault code Fault reason 

1 2011/01/25 17:50:00 5.4 -19.4 0  
2 2011/01/25 18:10:00 4.4 -16.5 0  
3 2011/01/25 18:20:00 5.9 -22 275 Automation yaw 
4 2011/01/25 18:30:00 9.3 -21.4 275 Automation yaw 
5 2011/01/25 18:40:00 8.6 -21.2 275 Automation yaw 
6 2011/01/25 18:50:00 8.9 -3.4 275 Automation yaw 

 
 

Table 6. SCADA data records 6 
Num Data Time Wind speed Active power Fault code Fault reason 

1 2011/01/27 7:40:00 22.7 -21.1 144 Over wind speed 
2 2011/01/27 7:50:00 21.7 -20.9 144 Over wind speed 
3 2011/01/27 8:00:00 22.5 -21.1 144 Over wind speed 
4 2011/01/27 8:10:00 20.3 -3 144 Over wind speed 

 
 

To build the MSET model, operating data of normal state are selected and a process 
matrix is constructed. We abandon the data of which the power is less than 0, assume the data 
of which the wind speed is lower than 3 mps is 3mps and the data of which the wind speed is 
higher than 25 mps is 25 mps. Other data are all from the normal operating information and 
referred to as the process memory matrix D. The ultimate process memory matrix D consists of 
685 observation vectors. After constructing the D, we can predict the new input observation 
vector of MSET temperature model using Equation 8. 

 
5.3. Construction And Checking of The Model 

669 historical operating data from 17:20:00 22nd Jan. 2011 to 17:20:00 27th Jan. 2011 
confirm the correctness of the MSET model. During this period, the maximum and minimum 
values of gear box bearings’ temperature are 70℃and 50℃ respectively. 

In this paper, the first 500 data are chosen to construct the matrix D, and the bearing 
temperature column of the rest 199 data is chosen to be the input Xobs. The first picture of 
Figure 3 is the observed value and estimate curve through simulation test, and the second 
picture shows the residuals between observed value and estimate value. 

Using the moving window statistical method to further analyze the residuals above, we 
conclude its characteristics curve as Figure 4. We assume the window width N=20 and 
calculate the threshold Ev’s value. The maximum absolute residual value is 0.493 (k1=3, 

479.1YE ). 
 

5.4. Simulation Test of Early Diagnostic Alert 
After the construction and correctness checking of MSET model, we add the 

temperature offset to imitate the situation when a gear box fault leads to its temperature 
increase. Starting from Point 51, a step temperature offset of 0.25 is added to the 199 data. 
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Figure 5 is the estimate simulation result of MSET model with temperature offsets added in. The 
first picture is the comparison of observed value and estimate value and the second is its 
residual curve. From the second picture’s curve, we can see that the errors at the first 50 points 
are very small, while it increases gradually from the 51st point, and the deviations are mainly the 
temperature offsets. 

 
 

 
 

Figure 3. Curves of observed value and estimate value and residual  
 

 

 
 

Figure 4. Residual’s moving window statistical characteristics 
 

 

 
 

Figure 5. Estimate results with temperature added 
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Then the residuals after temperature offsets are taken into account and a simulation 
test is conducted based on the moving window statistical method. We assume the window width 
N=10, and its characteristics curve is shown in Figure 6. 

 
 

 
 

Figure 6. Residual moving window statistical characteristics curve after temperature offset 
 

 
In Figure 6, after added with manned offsets and processed by moving window 

statistical method, the residual curve of bearing temperature increases constantly, and overtops 
its up threshold at Point 45, which triggers the early fault alert. The distance between this point 
and the first point at which manned offset is added (Point 51) is 45+20-51=14(20 refers to the 
window width). Thus, at the 65th (51+14=65) point, we can detect the abnormal acts of gear 
box’s bearing temperature. As to Point 65, we can also calculate the deviation between original 
state and manned-offsetting state according to temperature offset steps and bearing 
temperature, that is 14*0.25=3.5�. 
 
 

 
 

Figure 7. Similarity curve with temperature offset 
 
 

Figure 7 shows the bearing temperature’s similarity curve after manned offsets have 
been added in. We can tell that the similarity at Point 65 is 0.96, and the similarity at Point 147 
is 0.76. A small similarity stands for an abnormal act of turbines’ operation. In Figure 8, 
considering the manned offsets, the whole temperature curve are divided into three parts----
normal operating state, device early warning state and alerting state. When the gear box is 
working normally and its temperature residual does not exceed the mean threshold, the turbine 
is in the normal operating state. When the residual exceeds the threshold, it will be in the early 
warning state. When device’s temperature overtops the maximum value set by its manufacturer, 

an alert will occur (The normal operating temperature of this type of wind turbine: 91gear T �). 
In Figure 7, at Point 147, the bearing temperature reaches 92.25�, which exceeds the 
maximum operating value and triggers the system alert. If the turbine moves on without taking 
necessary measures, the gear box will be damaged and the unit will not function properly and 
regularly. 
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Figure 8. The prognostic system 
 
 
6. Conclusion 

Being simple in modeling algorithm and clear in physical meaning, the Nonlinear 
Multivariate State Estimate Technique (NMSET) is very appropriate for a complex and random 
process. By adopting the NMSET and selecting the proper variables related to the gear box 
temperature, this paper constructs a process memory matrix and a MSET model based on 
SCADA data. Compared with the neural network algorithm, this non-parameter construction 
method has clearer physical meanings and saves the training time. When a fault occurs to gear 
boxes and its temperature deviates from the normal value, the residual distribution of its MSET 
model will change accordingly. We can easily judge the current state of gear boxes just by 
calculating the trends of residual mean values and standard deviation and then comparing them 
with the setting thresholds. The effectiveness and correctness of this method is then confirmed 
by simulation tests and fault analysis. Finally, the Moving Window Statistical Characteristics 
technique can eliminate uncertainties and random disturbances (such as the sensor’s 
measuring error) so as to improve the reliability of monitoring and early fault diagnosing. 
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