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 Hand gesture recognition becomes a popular topic of deep learning and 
provides many application fields for bridging the human-computer barrier 
and has a positive impact on our daily life. The primary idea of our project is 
a static gesture acquisition from depth camera and to process the input 
images to train the deep convolutional neural network pre-trained on 
ImageNet dataset. Proposed system consists of gesture capture device (Intel® 
RealSense™ depth camera D435), pre-processing and image segmentation 
algorithms, feature extraction algorithm and object classification. For pre-

processing and image segmentation algorithms computer vision methods 
from the OpenCV and Intel Real Sense libraries are used. The subsystem for 
features extracting and gestures classification is based on the modified VGG-
16 by using the TensorFlow&Keras deep learning framework. Performance 
of the static gestures recognition system is evaluated using maching learning 
metrics. Experimental results show that the proposed model, trained on a 
database of 2000 images, provides high recognition accuracy both at the 
training and testing stages. 
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1. INTRODUCTION  

One of the recent year’s trends is deep learning (DL) technology which is used in the digital image 

processing for solving complex problems (a classification, segmentation and image detection). DL 

techniques, such as convolutional neural networks (CNNs), have already influenced a wide range of signal 

processing activities within traditional and new advanced areas, including key aspects of machine learning 

and artificial intelligence [1]. In particular, CNNs showed superior performance in face detection applications 

[2, 3]. Furthermore, DL has made considerable progress in detection and classification of the hand gestures 

for implementation into the human computer interaction (HCI) technologies [4-6].  

A gesture is a configuration and/or movement of a body part that expresses an emotion, intention or 

command. A set of gestures and their meanings form the gestures vocabulary. Gestures can be divided into 
two types: static and dynamic gestures. In static gestures the hand position does not change during the gesture 

demonstration. Static gestures mainly rely on the shape and flexure fingers angles. In the second case, hand 

position changes continuously so that dynamic gestures rely on the hand trajectories and orientations, in 

addition to the shape and fingers angles [5].  

Intel Inc. created RealSense deep vision technology and developed (in collaboration with Microsoft) the 

tool for 3D face recognition, which provides access to Windows10 devices [7]. RealSense technology supported 
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by an open source software development kit [8]. The second generation RealSense cameras and its stereo vision to 

calculate depth [9] were introduced in January 2018. Despite the fact that Intel RealSense D400 series devices 

appeared on the market only in recent years, they began to be used in many areas, for example, in security systems 

[10], robotics [11], medicine [12], and agriculture [13]. At the same time, there are no works that report on the 

RealSense D400 using for recognizing hand gestures that can be integrated into effective HCI systems. 

In this regard, the aim of this work is to develop a gesture recognition approach based on the 

combined use of the RealSense D435 depth sensor for gesture capture and a pre-trained convolutional neural 

network with VGG-16 architecture for features extraction and objects classifying. RealSense libraries from 

Intel, OpenCV and open-source DL frameworks Keras and TensorFlow are used for software implementation 

of the gesture recognition system on Python. To determine the performance of our approach we collected a 
database of 1,000 images, which consists of 40 different types for 5 gestures, which were presented to the 

sensor by 5 people, and tested the recognition system on the database. 

The rest of this paper is structured as follows. The details of the proposed method are described in 

Section 2. In Section 3, we briefly introduce our newly collected database and show the experimental results. 

Conclusion and future research are presented in Section 5. 

 

 

2. RESEARCH METHOD  

2.1.   General framework of the hand static gesture recognition system 

Hand gestures recognition is a difficult task due to objective and subjective differences associated 

with a large number of degrees of freedom of the hand and fingers bones, the differences in articulation, a 
relatively small area of the hands, and a different skin color. In addition, reliable algorithms for segmentation 

and detection of the hands and fingers positions should have invariance with respect to the size, speed and 

orientation of the gesture, the scene brightness, the background heterogeneity and other parameters. 

Therefore, a lot of difficulties can be introduced into the automating process of the hand gestures recognition.  

In order to handle the above-mentioned difficulties, we propose a recognizing static hand gestures 

system based on the digital processing of the color and depth images from a video stream in real time and 

extracting classification features from them inside convolutional neural network. The structure of the 

proposed system is shown in Figure 1, and operation principle of each stage is described in detail in the 

following subsections. 

 

 

 
 

Figure 1. Block diagram of proposed static hand gesture recognition system 

 

 

2.2.  Capture images with hand gestures 

The purpose of the gesture capture sensor is to digitize the gesture. Liao B. et al [14] proposed a 

static recognition system based on the deep learning model. A double-channel CNN to fuse the color 
information and depth information data were captured by Intel RealSense300 depth camera. Experimental 

results on hand gestures representing English alphabet demonstrate that the recognition accuracy is 99.4%. It 

was shown that depth cameras (known also as RGB-D sensors) greatly reduce various restrictions on 

experimental conditions as they obtain both RGB images and depth information in an actual time altogether.  
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Due to their versatility, accuracy and compactness such sensors and depth-sensing technology 

provided a significant boost for hand gesture and posture recognition algorithms [15-19]. The used methods 

for features extraction and gestures classification provide high recognition accuracy of both static and 

dynamic gestures. It should be noted that in the majority of papers, the effectiveness of recognition systems is 

obtained for the small gestures sets. It limits their mass application. This is confirmed by the fact that there 

are many open source developments for face, mouth and eye recognition (OpenCV), but there is reliable hand 

detectors absence. Therefore, the problem of improving static and dynamic posture recognition on a photo 

image or in a video stream remains relevant. 

In our work the input sensor is an RGB-D camera (Intel® RealSense ™ D435) that gives us an RGB 

image as well as depths for each point. RealSense D435 is a compact (99mm  25mm  25mm; weight 72g) 
peripheral RGB-D device supporting USB 3.1 standard with a range of up to 10 m. The camera consists of 

Vision Processor D4, Depth Module and RGB camera. The characteristics of an active stereo depth deep 

resolution and RGB resolution are up to 1280720 and 19201080, respectively. 
A pair of identical cameras referred as imagers (left and right) and an infrared (IR) projector are 

used to stereo vision realization and to calculate depth as shown in Figure 2 [16]. The infrared projector 

projects non-visible static IR pattern to improve depth accuracy in scenes with low texture. The left and right 

imagers capture the scene and send imager data to the depth imaging (vision) processor, which calculates 
depth values for each pixel in the image by correlating points on the left image to the right image and via 

shift between a point on the Left image and the Right image. The depth pixel values are processed to generate 

a depth frame. Subsequent depth frames create a depth video stream. 

Open library RealSense SDK 2.0 has standard functions for camera initialization, parameters 

setting, functions and methods for reading frames from the video stream, by calculating the distance from the 

hand to the depth camera, RGB images and depth maps saving methods [15]. It is possible to modify the 

algorithms available in the source code of the RealSence SDK 2.0. The methods and functions from 

Realsence SDK 2.0 were used to implement gestures image. Some additional functions for gesture capture 

were coded by the authors. 

 

 

 
 

Figure 2. (a) RealSense D435, Output data from the sensor, (b) RGB image, (c) Depth image 
 

 

2.3.   Image preprocessing 

Performing various operations in the subsequent steps of the gesture recognition system, such as 

segmentation and feature extraction, is much easier for pre-processed images. At this stage, usually the 

interferences and external noise are reduced by applying the operations of averaging and histograms leveling, 

color normalization is also carried out in accordance with the lighting conditions and light temperature [9]. 

In this paper, a bilateral filter from the OpenCV library is used to remove noise in the frame. 

Additional method for determining the average brightness of pixels in an image is applied. We implemented 

a function for calculating average brightness using non-linear conversion from RGB color model to the HSV 

(Hue, Saturation, Value), where Value is the brightness parameter [20]. 
 

2.4.   Segmentation methods 

Segmentation is an extraction of an interest object (hand) from the background and determining its 

location in the scene. At this step, the following operations are performed: searching for a Region of Interest 

(ROI) to detect hands, removing the background, converting the color image to grayscale frame, Gaussian 

filtering for cleaning of noised grayscale images, contouring the segmented object and final binary 

thresholding to isolate the hand as shown in Figure 3. To implement these operations, we used both methods 

from the OpenCV library and own code development. 
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Figure 3. Hand gesture segmentation 

 

 

2.5.  Basic architecture VGG-16 and transfer training  

A classification or recognition mechanism is a computational algorithm that takes an object 

representation and correlates (classifies) it as an instance of some known class type. In proposed method for 

hand static gestures recognition we have used deep convolutional neural network (DCNN) with VGG-16 

model pre-trained on big image dataset. The VGG network architecture was developed by K. Simonyan and 

A. Zisserman [21]. Designing architecture with small convolution filters with 3×3 size shows a significant 

improvement on the neural networks that can be achieved by pushing the depth to 16-19 weight layers. The 5 

convolutional blocks are followed by 5 max-pooling layers, and three fully-connected layers. The final 1000-

way layer is a soft-max layer that outputs class probabilities. VGG-16 was trained and tested on ImageNet 

database to classify the 1.3 million images to the 1000 classes with accuracy of 92.7% [13]. 
DCNN with fixed weights of the convolutional layers, obtained by training on large-scale sets of 

natural images (ImageNet) shows the high accuracy of classifying images from other subject areas. Such 

approach based on VGG-16 and concept of a transfer learning and fine-tuning was used for classification of 

malware samples represented as byte plot grayscale images [22]. The transfer of training consists in 

transferring the parameters of a neural network trained with one data set to train an another neural network 

for a similar problem with different dataset images [23]. When the target dataset is significantly smaller than 

the base dataset, transfer learning can be a powerful tool to enable training a large target network without 

overfitting. 

Fine-tuning is associated with the need to change and retrain fully connected layers in the classifier. 

The basic architecture of VGG-16 contains 1000 output neurons in the last layer according to the number of 

the object’s classes. In a new classification task (for example, in the gesture recognition problem), the 
number of classes may differ from that in the original data set. In this case, the last layer in the VGG-16 

architecture must be removed, and a new classifier with the required number of output neurons must be 

added. It is also necessary to replace the previous fully connected layers since their output vectors do not 

correspond to the new classification layer. 

For the proposed system of the static hand gestures recognition we use modified VGG-16 

architecture, in which fully connected layers with a large number of neurons are replaced by 4 dense layers 

with fewer neurons. The dropout layer has 5 output channels for 5 gestures from the training and test sets. 

The new layers weights are initialized with random values, after which the learning process on the training 

data set begins. We use an end-to-end approach proving surprisingly powerful. With minimum training data 

from humans the neuron's weights were corrected and recognition system was learnt to identify hand 

gestures. The input data to VGG-16 model is an RGB image with the fixed size of 224 × 224. Therefore, at 

the segmentation stage, processed frames with a segmented gesture saved in a different color resolution RGB 
model are converted to 224 × 224 format and transferred to the DCNN input. After going through stack of 

convolution and pooling layers, RGB images of hand gestures are converted into features maps and sent to 

dense layers. In the last step, the softmax model is used to gesture predict and output the result as a confusion 

matrix. 

 

 

3. EXPERIMENTAL RESULTS 

3.1.   Datasets 

We prepared a new database which contains images with segmented static hand gestures shown in 

Figure 4. We selected these gestures, which are also included in alternative dataset [24, 25] and can be used 

to cross-validate proposed static hand gesture recognition system model. Depth camera Intel RealSense D400 
placed over a table, the subjects sat close to it, and moved their right hand over the sensor at a distance 

between 10 and 75cm in front of it as shown in Figure 5. The gestures were performed by 10 different 

subjects (5 women and 5 men).  
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Figure 4. Dataset samples 

 

 

Our dataset has a total of 2,000 pictures, including 1,000 RGB images and 1,000 depth maps, 

collected under different backgrounds in a few rooms with illumination changes. In order to increase the 

diversity of the database, we also tried image augmentation by using of flips, skews, rotations and etc. The 

static hand gestures database was used only for the training of the modified VGG-16. At the 

validation/testing stage RGB and depth images from RealSense D400 used directly to predict gesture. 
DCNN training is the fine-tuned process based on the pre-trained models VGG-16 on ImageSet. At 

the start, the learning rate is 0.01 and then decreases by 10 times every 2000 iterations. Weight decay is set to 

0.0004. At most 10,000 iterations were needed for the fine-tuning on training set. The experiments were done 

on a Intel(R) Core(TM) i7- 9750H CPU, NVIDIA GeForce GTX 1650, 16 GB RAM desktop. After 

performing transfer learning with a fine tuned last activation layer we were able to achieve an average 

accuracy of 95,5 % on the 5-class subset of the static hand gesture.  

 

 

 
 

Figure 5. Sample human static hand gesture tracking from RealSense D400 sensor 
 

 

3.2.  Performance metrics 

The confusion matrix (CM) has been used for obtaining quantitative results. The precision, recall, 

and F-Score measures are used as metrics for evaluation. CM of size nn associated with a classifier shows 
the predicted and actual classification, where n is the number of different classes [25]. We use an alternative 

construction of CM: each column represents the percentage of hand gestures that belongs to each class, and 

along the first diagonal are the correct classifications, whereas all the other entries show misclassifications 

[24]. From CM matrix two measurements can be directly observed, the precision and the recall, which can be 

expressed as follows: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑑

𝑑+𝑏
 ,                                                                    (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 100 ×
𝑑

𝑑+𝑐
                                                                (2) 

 

Recall demonstrates the ability of the algorithm to detect a given class in general, and precision 

demonstrates the ability to distinguish this class from other classes. F-Score is a harmonic mean of the 

precision and recall: 
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𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                         (3) 

 

The F-Score reaches its maximum with precision and recall equal to unity and is close to zero if one 

of the arguments is close to zero. 

 

3.3.   Results and discussion 

Table 1 presents the CM obtained by using the proposed static hand gesture recognition system on 

test stage. As it can be seen, for all the gestures the precision, elements of the main diagonal, are over 97% 

and just a small percentage of samples are detected as belonging to other gestures, but its amount is less than 
0.2%. This indicates that our algorithm is quite accurate in two measurements, precision and recall. 

Exception is recognition of palm, where the classification error is greater than 2.5%. This can be explained 

by a certain similarity between this gesture and the gesture of Peace. The average accuracy of gesture 

recognition (according to the first diagonal of the SM) reaches 99.4%. 

 

 

Table 1. Confusion matrix for the proposed static hand gesture recognition system 
 Predicted Gesture  

Actual gesture Fist L Ok Palm Peace Precisionc 

Fist 99,9798 0,0018 0,0131 0,005 0,0003 0,9998 

L 0 99,9978 0,0021 0 0,0001 1,0000 

Ok 0,0008 0,0255 99,9726 0 0,0011 0,9997 

Palm 0,0194 0,0159 0,0151 97,4405 2,5091 0,9744 

Peace 0 0,0004 0,0032 0,6245 99,3719 0,9937 

Recall 0,9998 0,9996 0,9997 0,9936 0,9754  

 

 

The proposed hand gesture recognition system has been compared with the one proposed in [24]. 

The near-infrared images of the same gestures acquired by a Leap Motion sensor. Along with the CM values, 
the F-Score measure is also used to compare the results of both solutions. This measure is present in Table 2. 

As it can be seen in Table 2, proposed system is the one that achieves comparable results.  

 

 

Table 2. F-Score results for the proposed system and for the recognition system from [24] 
 Hand Gesture Recognition System 

Gesture Proposed [24] 

Fist 0,9998 0,99 

L 0,9998 0,99 

Ok 0,9997 0,99 

Palm 0,9839 1 

Peace 0,9845 0,99 

 
 

The recognition system proposed in [24] use RGB sensor and a global image descriptor, called 

Depth Spatiograms of Quantized Patterns (DSQP), without any hand segmentation stage. Image descriptors 

reduced from DSQP are analyzed by a set of Support Vectors Machines to gesture classification. This 

comparison also allows us to notice that depth maps and convolution neural networks allow achieving same 

high performance. 

 

 

4. CONCLUSION  

We proposed static hand gesture recognition system that utilizes both RGB and depth information 

from Intel® Real Sense™ depth camera D435. We utilized depth sensor’s unique property to segment hand 
poses and perform background denoising on images with gesture. Features extraction and gesture 

classification were performed on the deep convolution neural networks (DCNN) with VGG network 

architecture, pre- trained on the ImageNet database. The proposed DCNN with transfer learning was 

implemented by Keras which takes the TensorFlow as the backend. Our training database was collected 

manually using both RGB and depth images from depth sensor. This database consists of 2,000 samples 

performed by 5 women and 5 men. Modified VGG-16 model delivered the high accuracy on training set of 

images. Obtained recognition scores on the test stage prove the efficiency of the presented recognition 

framework, and claim a higher prominence of the depth camera D435 for future HMI applications. However, 

the static hand gestures recognition is insufficient for effective HCI systems. Therefore, future research is 
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related to the method development for recognizing dynamic hand gestures and the expansion of the database 

and object classes. 
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