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 This paper presented the bandstop Koch fractal embedded hexagonal loop 
frequency selective surface (FSS) for the X-band application. The simulated 
transmission coefficient response (   ) had been obtained by using CST 

software. The surface current distribution and the electric field density are 
illustrated to explain in detail the     of the fractal based FSS structure.  

The proposed structure is highly insensitive towards angular stability and 
also polarization independent up to    . The parametric analysis on the effect 

of the periodicity, width, and height of the fractal FSS structure on the 
    has been illustrated and discussed thoroughly.  
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1. INTRODUCTION 
The frequency selective surface (FSS) which also known as a spatial filter, is made up of 1-D or 2-D infinite 

periodic array of similar elements that allows the transmission and reflection of the plane wave that incident onto the 

structure [1]. An American physicist, David Rittenhouse, had discovered the potential of FSS to be used as spatial 

filter when he found out that the light spectrum‘s colors being filtered through a silk scarf while observing a lamp,  

and became the pioneer for the study of the FSS structure. The filter response of a FSS is highly dependent on the two 

different array geometries, which are the patches and the slots. The patch array and the slot array represent the low 

pass filter characteristic and high pass filter characteristic, respectively, which can be explained by the Babinet‘s 

principle. The combination of both arrays can yield the bandpass and bandstop filter characteristics. For the traditional 

FSS, a longer electrical length is required especially for the low frequency response. Furthermore, some applications 

require a smaller-sized FSS screen to achieve better filter performance. The parameters such as multiband and wide 

BW behavior, angular stability, and polarization independent properties are unachievable by utilizing the traditional 

FSS geometry, which can deteriorate the filter‘s performance. To address these limitations, the utilization of the fractal 
structure is suggested to miniaturize the dimension of the FSS.  
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In 1991, the idea of utilizing fractal geometry such as Minkowski loop and the Hilbert curve had 

been introduced by Parker and El sheikh [2], to miniaturize the FSS structure. Few factors had led to the 

utilization of fractal geometry onto the FSS structure. The first factor is that a large number of traditional FSS 

unit cell required for obtaining the specified frequency response based on the mutual interactions of the unit 

cells [3]. The small size of the FSS screen is required for some applications to achieve high angular stability 

response. Furthermore, the traditional FSS geometry unable to provide the best filter‘s performance in terms 

of multiband and broad bandwidth (BW) behaviors, angular stability and polarization independence [4]. 

Thus, fractal geometry is introduced to overcome these limitations. The uniqueness of the self-similarity of 

the fractal frequency selective surface structure had been reported widely in numerous studies for different 

applications [3, 5-11], which includes multiband and wide BW behavior, angular independent operations and 
low grating lobes appearance in a compact design.  

Previously, the utilization of hexagonal geometry for FSS structure is proven to have higher angular 

stability than the traditional square geometry of FSS [12, 13]. The hexagonal geometry also able to employ 

the multiband and wide BW behavior that have high insensitivity towards angular stability and polarization 

independence. The hexagonal slot geometry had been applied together with Koch fractal structure as in [12] 

to achieve multiband and wide BW passband filter. For this paper, the utilization of Koch fractal to the 

hexagonal loop FSS structure is analyzed and discussed in detail in terms of frequency response behavior, 

angular stability and polarization independence. When the Koch fractal structure embedded to the hexagonal 

loop FSS structure, with the increased of the iteration level to 2nd level, the transmission coefficient (   ) 

exceeding -10 dB over the range of 2.23GHz ( from 8.24 GHz to 10.47 GHz), which is resonated at 

frequency of 9.5 GHz and thus applicable for X-band application. The proposed fractal FSS structure has 
higher stability toward angular stability at higher iteration level. However, for the TE mode polarization,  

the BW increased, while for the TM mode polarization, the BW decreased continuously as the oblique angles 

increased. The BW enhancement for the entire X band (8 GHz to 12 GHz) can be further study in the future. 

The parametric study which includes the periodicity, width and also the height of the proposed Koch fractal 

hexagonal loop FSS structure had been simulated by the CST software and discussed in detail in the results 

and discussions section.  

 

 

2. DESIGN OF FRACTAL-BASED FREQUENCY SELECTIVE SURFACE 

For the hexagonal loop structure, (1) shows that the resonant frequency (  ) can be deduced when 
the electrical length of the geometry structure is half wavelength. As the FSS structure does not have the 

ground plane, the    is highly dependent on the electromagnetic properties FSS structural element.  
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where   is the speed of light,      is the effective permittivity and    is the permittivity of the  

dielectric material.  

For the Koch fractal structure, the Iterated Function System (IFS), which was invented by John 

Hutchinson, was applied to the fractal structure by using the affine transformations, as reported in several 

previous studies [14-17]. Based on (3), a two-dimensional affine transformation,  , was introduced on the 

Euclidean plane, in which the parameters are represented by six variables (i.e.,            and  ).  
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where the matrix of       and  , is defined as a linear transformation that includes a combination of rotation, 

scaling, and a sheer, and then translated by the matrix of   and  .  
For the acquired low frequency, a large FSS dimension is required to accommodate the longer electrical 

lengths, and this could result in the appearance of grating lobes [1, 18]. The grating lobe phenomenon arises due to 

large spacing between the unit cell elements (D) as well as the angle of the incident wave depicted in (4).  

 

  
  

      
 (4) 

 

where    is the resonant wavelength of the FSS and   is the angle of the incident wave.  
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Based on the (4), the periodicity of the unit cell should be less than the    at initial incident angle. 

With a higher value of incident angle, the unit cell periodicity should be half the free space wavelength to 

prevent the occurrence of the grating lobe phenomena—a limitation that can be prevented by implementing a 

fractal structure to miniaturize the FSS. For example, extensive studies over the past decade have integrated 

patch or slot elements with the fractal structures such as the Koch fractal structure [3, 19], the Minkowski 

[20] and the Minkowski island [21], the Interdigital fractal structure [22], the Sierpinski fractal structure [23], 

the Swastika fractal structure [24] etc., to reduce the size of the FSS element.  
All the hexagonal loop and the proposed Koch fractal hexagonal loop FSS structures had been 

simulated by using the CST software. The FR4 substrate with    of 4.3 and the 1.6-mm-thick lossy substrate, 

with 0.035-mm-thick copper layer with a conductivity of        S/m, had been used as the dielectric 

substrate. Figure 1 shows the hexagonal loop and the proposed Koch fractal hexagonal loop FSS structures with 

optimized parameters such as the unit cell periodicity (  = 7.22 mm), the width of the hexagonal loop (  = 0.20 

mm) and the side length of the hexagonal loop (  = 3.33 mm), which resonated at 11.03 GHz. The proposed 

Koch fractal hexagonal loop FSS structure which employed the first and the second iteration levels of the Koch 

fractal structure are shown in Figure 1(b) and 1(c). Figure 1d shows the simulation of a unit cell of the proposed 

FSS structure with unit cell boundary condition to simulate the frequency response of the proposed FSS.  
 

 

   
(a) (b) (c) 

 

 
(d) 

 

Figure 1. The hexagonal loops FSS structures. (a) hexagonal loop FSS, (b) 1st iteration level of Koch fractal 

hexagonal loop FSS, (c) 2nd iteration level of Koch fractal hexagonal loop FSS, (d) A unit cell of the 

proposed FSS with unit cell boundary conditions to simulate the frequency response of the proposed FSS 

 

 
The self-similarity feature of the Koch fractal structure based on (5) has allows the miniaturization 

of the FSS structure for obtaining the specified X-band frequency.  
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where    = scaling fraction 

  = copies of the original geometry to be made 

  = self-similarity dimension  
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3. RESULTS AND DISCUSSION 

For bandstop fractal based FSS structure, the parameters such as   ,    , BW, angular stability and 

polarization independence were studied for determining the best performance of the bandstop fractal-based 

FSS structure for X-band application. Figure 2 shows the simulated     results of the hexagonal loop and the 

proposed Koch fractal hexagonal loop FSS structures. Generally, the increasing of the iteration level would 

shift the    to the low frequency region, which is agreeable with the simulated     results. For the hexagonal 

loop FSS, the initial values of    and BW are 11.03 GHz and 2.67 GHz, respectively. When the Koch fractal 
structure embedded to the hexagonal loop FSS structure, with the increased of the iteration level to 2nd level, 

the    and BW had decreased to 9.5 GHz and 2.23GHz (from 8.24 GHz to 10.47 GHz), respectively.  

 

 

 
 

Figure 2. The simulated     for the hexagonal loop fractal based FSS structures. (a) hexagonal loop FSS,  

(b) 1st iteration level and (c) 2nd iteration level of Koch fractal hexagonal loop FSS 

 

 
Previously, it is known that the ability of the hexagonal geometry in providing better performance of 

FSS structure in terms of angular stability and polarization [12, 13]. Figure 3 depicted the simulated     of 

the basic and the proposed Koch fractal hexagonal loop FSS structure for TE and TM polarized wave 

incidence at the variation of oblique angles (                              ). By comparing the first and 

the second iteration level of Koch fractal, the shifting of the    as the increasing of oblique angles is less 

pronounced at higher iteration level of the fractal structure. However, for the TE mode polarization,  

the BW increased, while for the TM mode polarization, the BW decreased continuously as the oblique  

angles increased.  

 
 

 
 

(a) TE mode (b) TM mode polarization for 1st iteration level of 

Koch fractal hexagonal loop FSS 
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(c) TE mode (d) TM mode polarization for 2nd iteration level of 

Koch fractal hexagonal loop FSS 

 

Figure 3. The simulated     at variation of oblique angles (                              ) 
 

 

Figure 4 depicted the surface current distribution and the electric energy density (the distribution of 
the electric field) for the hexagonal loop and also the proposed Koch fractal hexagonal loop FSS structure, 

for better understanding of the fractal FSS‘s physical mechanism. It can be observed that in Figures 4(a), 4(b) 

and 4(c), the strongest surface current density exists on the left and the right sides of the hexagonal loop 

structures. As the iteration level increased, the stronger surface current density appeared at the Koch fractal 

geometry of the hexagonal loop FSS structure. Figure 4(d), 4(e) and 4(f) show the E-filed distribution of the 

hexagonal loop and also the proposed Koch fractal hexagonal loop FSS structures. It can be seen that the 

edge center of up and down sides of the hexagonal loop and the proposed Koch fractal hexagonal loop FSS 

structure had the strongest distribution of E-field. Based on this information, it is agreeable that the length of 

the current path is increased proportionally with the iteration level of the Koch fractal as can be seen in 

Figure 4, which lead to the reduction of    as in (1) and allows the specify    to be obtained.  

 
 

   
(a) 

 

(b) 

 

(c) 

 

   
(d) (e) (f) 

 

Figure 4. The surface current distribution of (a) hexagonal loop FSS, (b) 1st iteration level of Koch fractal 

hexagonal loop FSS, and (c) 2nd iteration level of Koch fractal hexagonal loop FSS; The E-field distribution 

of (d) hexagonal loop FSS, (e) 1st iteration level of Koch fractal hexagonal loop FSS, and (f) 2nd iteration 

level of Koch fractal hexagonal loop FSS 
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3.1.   Parametric analysis 

The parametric analysis on the physical mechanism of the proposed Koch fractal hexagonal loop 

FSS structure had been done for investigating the effect of the periodicity (p), width (w) and height of the 

Koch fractal on the     response. Figure 5 shows the simulated     response for various ‗p‘ value. It can be 

observed that for both of the iteration level of Koch fractal hexagonal loop FSS structure, the    would be 

shifted to the high frequency region and at the same time, would decrease the value of BW and     as the 

periodicity increased. The values of BW and     with the periodicity of 7.0 mm are 2.33 GHz (8.33 GHz ~ 
10.66 GHz) and -30.35 dB respectively, for the first iteration level of the Koch fractal. As the periodicity 

increased up to 8.0 mm, the decreased values of BW and     are 1.85 GHz (9.03 GHz ~ 10.88 GHz) and -

27.71 dB, respectively. For the second iteration, the values of BW and     with the periodicity of 7.0 mm are 

2.36 GHz (8.0834 GHz ~ 10.438 GHz) and -30.20 dB respectively. As the periodicity increased up to 8.0 

mm, it affected the values of BW and     which are 1.78 GHz (8.84 GHz ~ 10.62 GHz) and -27.54 dB, 

respectively. This is because the metal area in unit cell decrease, so the reflected power is lower,  

hence attenuation level in transmission is lower as well [25].  

 

 

  
(a) (b) 

 

Figure 5. The simulated     results of the variation of the periodicity of hexagonal loops fractal based FSS 

structures. (a) 1st iteration level and (b) 2nd iteration level of Koch fractal hexagonal loop FSS 

 
 

The simulated     response for variation of ‗w‘ is depicted in Figure 6. For both of the iteration 

level, the initial width of the proposed Koch fractal hexagonal loop FSS structure provides the BW of 2.14 

GHz (8.62 GHz ~ 10.76 GHz) for the first iteration and 2.23 GHz (8.24 GHz ~ 10.47 GHz) for the second 

iteration level of fractal FSS structure. It can be seen that the increase of ‗w‘ up to 0.5 mm had resulted in an 

increased value of BW and   , which is more significant for the second iteration level of the Koch fractal 

hexagonal loop FSS structure. However, the increased of ‗w‘ would disturb the compactness of the fractal 

FSS structure.  

 

 

  
(a) (b) 

 

Figure 6. The simulated     results of the variation of ‗w‘ of hexagonal loops fractal based FSS structures. (a) 

1st iteration level and (b) 2nd iteration level of Koch fractal hexagonal loop FSS 
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Figure 7 shows the effect of the height of the Koch fractal geometry on the     response. The height 

of the Koch fractal is highly dependent on the indentation angle of the Koch fractal geometry structure, as the 

changes of the indentation angle are proportional to the changes of the height of the Koch fractal. The height 

of the Koch fractal is varied from 0.34 mm up to 0.98 mm for variation of indentation angle 

(                           ). Based on Figure 7, at both iteration level, the value of    had shifted to the 

left and the value of BW had decreased further. As the height increased, the electrical length of the Koch 

fractal is increased which lead to the decreased of the   , that is agreeable with the (1).  
 

 

  
(a) (b) 

 

Figure 7. The simulated     results of the variation of the height of the Koch fractal hexagonal loops 

FSS structures. (a) 1st iteration level and (b) 2nd iteration level of Koch fractal hexagonal loop FSS 

 

 

4. CONCLUSION  

In this paper, the design, the analysis of simulated    , and also the parametric analysis (periodicity, 

width, height) for the proposed Koch fractal hexagonal loop FSS structure is presented. The employment of 

Koch fractal to the hexagonal loop FSS structure is analyzed and discussed in detail in terms of frequency 
response behavior, angular stability and polarization independence. The fractal FSS structure is composed of 

Koch fractal hexagonal loop FSS structure. The proposed fractal FSS design provides –10 dB BW of 2.23 

GHz (from 8.24 GHz to 10.47 GHz) at    of 9.5 GHz, as well as higher angular stability and polarization 

independence, at second iteration level of Koch fractal geometry. However, for the TE mode polarization,  

the BW increased, while for the TM mode polarization, the BW decreased continuously as the oblique angles 

increased. For future work, the BW enhancement for the entire X band (8 GHz to 12 GHz) for the Koch 

fractal hexagonal loop FSS structure can be further study.  
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