
TELKOMNIKA, Vol. 11, No. 4, April 2013, pp. 2116~2123
ISSN: 2302-4046
  2116

Received January 14, 2013; Revised February 25, 2013; Accepted March 5, 2013

Turbo Code Design and Implementation of High-Speed
Parallel Decoder

Yi Bo-nian
The Technology Institute of automation of Wuhan University, Wuhan Hubei 430070

Corresponding author, e-mail: 2462158049@qq.com

Abstract
Due to the high complexity Turbo decoding algorithm, implemented the hardware decoder logic of

consumes more resources and storage resources, decode delay larger. In order to meet LTE systems,
high reliable transmission of high data rate needs high speed Turbo decoder design faces enormous
challenges. This topics select based on LTE system of parallel Turbo Code decoders hardware design and
achieved as research direction, select FPGA (Virtex-6) as hardware design and achieved of platform, from
Log-MAP algorithm of Sentinel of, and State measure value handed owned calculation in the of owned a of
processing, and Diego generation decoding algorithm of parallel of, and parallel interwoven Manager
design, and key path optimization technology, aspects analysis, design achieved has LTE Turbo Code
high-speed parallel decoders.

Keywords： LTE turbo code, log-map, parallel, FPGA, iterative decoding algorithm

Copyright © 2013 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction
Due to its good performance, after the introduction of Turbo Code [1, 2], it has attracted

many researchers. There are mainly two kinds of algorithms in Turbo iterative decoding
algorithms. One is Log-Map and Max-Log-MAP algorithm, the other is SOVA algorithm with
lower complexity. All the researches mainly center on the decoding performance,
implementation complexity, decoding suboptimal simplify, parallel decoding implementation,
fixed point quantify on the performance of decoding.

The encoding of Turbo code is very simple, no matter software implementation or
hardware implementation. However, the decoding process is rather complex. The long decoding
delay makes it a challenge to use it in practical engineering applications. FPGA manufactures
like Xilinx and Altera have targeted IP core to solve this problem but they are too expensive,
more than 15000 dollars. Furthermore, the targeted IP core can not be directly used in the
design. Therefore, it is important to make Turbo decoding faster and more generic on FPGA
platform.

2. Turbo Decoding Algorithm

Turbo decoding algorithm [3] mainly consists of two types: one is called SOVA evolved
from Viterbi algorithm, the other is Log-MAP and Max-Log-Map evolved from MAP algorithm
which achieves high performance. Due to its poor performance, we will not talk about the SOVA
algorithm.

Figure 1. The Structure of Turbo Iterative Decoding Algorithm

)(1 ka dL

)(1 xLe

)(1 ke dL

p
ky1

s
ky

p
ky2

)(2 ke dL

)(2 ke dL

)(2 xLe

1﹣π

π

π

π

TELKOMNIKA ISSN: 2302-4046 

Turbo Code Design and Implementation of High-Speed Parallel Decoder (Yi Bo-nian)

2117

The two component decoder in Figure 1 all use SISO. SISO use the soft bit sequence to
calculate the posterior probability of each bit. The most common SISO algorithm are MAP, Log-
MAP and MAX-Log-MAP algorithm. MAP algorithm is based on the symbol maximum posteriori
probability decoding algorithm. For linear block coding is convolutional code, it can reduce the
bit error rate to minimum. The BCJR algorithm can calculate the posteriori probability of Markov
source going through discrete memoryless channel. Since the output of the convolutional
encoder through a discrete memoryless channel constitute a Markov source, therefore the
BCJR algorithm can be the maximum posteriori probability decoding algorithm for convolutional
code [4].

 Deduce the MAP decoding algorithm of Turbo code in detail. There are lots of
multiplication in the MAP, therefore implement it directly on the hardware system is rather
complex. While if implement it in the Logarithmic domain, the multiplication can be converted
into addition and without any harm to the decoding performance.

The following give the derivation of the algorithm. Denote ݔ௧ as the encoding output of
system bit at time t , ܽ௧

௜ , ݅ ൌ 1,2 as the CRC at time t , ݎ௧
௜, ݅ ൌ 0,1,2 as the received data at time t,

while ݎ௧
଴ denoted as system bit, ݎ௧

ଵ and ݎ௧
ଶ stand for CRC bit.

),(log),(qpqp tt  (1)

)(log)(ppA tt  (2)

)(log)(11 qqB tt    (3)

The calculation steps of Log-MAP is as follows:

start from t=1 , use the following formula (4) to calculate),(qpt

0 1 1 (1 , ,) (,)

(,) 0 (1 , ,) 1 (,)

(,) lo g (,)

lo g (|) lo g (|) lo g ()

1

2 2 2

t t

p q p q
t t t t t

p q p q p q ac c
t t t t t t

p q p q

p r x p r a a p x x

L L
x r v r x L

 

    

  
 (4)

When t=1, initialize the foward branch metric A and using formula(5) to calculate)(pAt , then
store them.






 

p
tt

p
tttt

qppA

qppqqA

)],()(exp[log

),()(log)(log)(11 

 (5)

When t=N+1, initialize the backward branch metric B and using formula(6) to calculate)(pBt
from t=N to t=1.












q
tt

q
tttt

qpqB

qpqppB

)],()(exp[log

),()(log)(log)(

1

1 

 (6)

Calculate LLR from K=0 to K=N-1

1

0

1 0

1
(,)

1
(,)

1 1
(,) (,)

e x p [() (,) ()]

lo g
e x p [() (,) ()]

lo g e x p [() (,) ()] lo g e x p [() (,) ()]

t t t
p q S

t
t t t

p q S

t t t t t t
p q S p q S

A p p q B q

L L R
A p p q B q

A p p q B q A p p q B q







 
 

  


  

       




 
 (7)

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 4, April 2013 : 2116 – 2123

2118

Then calculate ()eL t using the calculated results tLLR

0()e a
t t t c tL L L R L L r   (8)

Use
e
tL as the priori information of),(qpt , then go to step (1) until the iteration of loop

operation reach the maximum number. Make decision according to the tLLR
 in the final

iteration process.

Function)1ln(),max()ln(|| yxyx eyxee  involves seeking maximum function
and calibration ion function. Function f(x) can be implemented using lookup table.

The Log-MAP algorithm only has addition operation, therefore it is easy to implement it
on the hardware. The calculation of state metric in Log-MAP is an iteration process. The
feedback path in the hardware is significant but also influence the maximum clock frequency.
The calibration function need an adder to modify it, which contribute to the path delay. The
Max-Log-MAP algorithm doesn’t need any calibration function or lookup table, so it can
significantly reduce the path delay, increase the maximum frequency clock. But this is at the
cost of performance reduction due to approximate calculation.

3. System Design
3.1. Minimum Bit Width Quantify
(1) Different Iteration Times

Figure 2 show us the performance of Log-MAP algorithm under different conditions with
code length 1024. We vary the test condition of float point, 6bit fixed point [5], 8bit fixed point
and 4 iteration times, 6 iteration times, 8 iteration times.

Figure 2. Performance of Log-MAP under Different Iteration Times and Bit Width

According to Figure 2, under the condition of the same code length, the performance
difference of two quantization methods is not affected much by the iteration times. With code
length 1024, the performance of the 8bit quantization is almost equal to the float point pattern.
The 6bit quantization is only 0.1dB reduction compared to the float point quantization.
(2) Different Code Length

This time, the iteration times is confirmed as 8. Under this condition, we vary the code
length with 512,1024, and 6144. The quantization methods are the same with the above.

TELKOMNIKA ISSN: 2302-4046 

Turbo Code Design and Implementation of High-Speed Parallel Decoder (Yi Bo-nian)

2119

Figure 3. Performance of Log-MAP under Different Code Length and Bit Width

From Figure 3, we can see that performance penalty of two different quantization is
almost the same. The performance loss worsen as code length increases. The performance
loss is about 0.1dB.

In summary, we can see that under different iteration times or different code length, the
differences between fixed point quantization and floating point quantization can be regarded as
fixed. The 8bit quantization almost has no performance loss while the 6bit has 0.1dB. So in you
design, if you attach great importance to the decoding performance, you can choose the 8bit
quantization method. In this paper we choose the 6bit quantization method due to the only 8 or
9 bit width in Xilinx FPGA RAM, regardless of the 0.1dB loss.

3.2. Implementation of Lookup Table in Calibration Function

In Log-MAP algorithm, the recursive formula  、  of is:

|)(|_),max(),(max* 212121 xxcorrfunxxxx  (9)

The calculation of LLR need to nest this formula 7 times, so it is one of the most basic arithmetic
unit in Log-MAP. For the recursive of  ,

1 1 1x   
2 2 2x   

|))|exp(1ln(|)(|_ 2121 xxxxcorrfun  (10)

Formula (10) is a calibration function. It need lookup table to implement it. Under the

condition of 3bit fractional bit quantized input channel information, the number of available
values are 22, fun_corr_table = [6,5,5,4,4,3,3,3,3,2,2,2,2,1,1,1,1,1,1,1,1,1]； while 2bit are
9,fun_corr_table = [3,2,2,2,1,1,1,1,1]；

4. FPGA Implementation
LTE Turbo code interleaver is a QPP interleave. When the code block is equally divided

into N = 0,1, ... code segments, each code segment can be achieved entirely without conflict
interleaving, thereby performing parallel decoding. Wherein, parameters ଵ݂ and ଶ݂ are
determined by the code block length K. Parallel decoder modules mainly includes input buffer

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 4, April 2013 : 2116 – 2123

2120

module, parallel PU module, interleaving/deinterleaving module. Parallel decoding unit PU and
interleaving/deinterleaving module in the decoder are used to implement the interleaver and
deinterleaver function. The input and output buffer module is used to complete parallel-serial
conversion or serial-parallel conversion and to improve throughput.

Figure 4. Function Diagram of Parallel Decoder

In order to further improve the data throughput, pipelining structure can be used in the
interior of each PU to implement iterative decoding [6]. For example, we choose four pipeline in
each PU, each sub-decoder contains basic SISO unit to complete the basic operation process,
external information storage RAM for interleaving and deinterleave also included. The first level
sub-decoder complete the previous It/4 times iteration of one sub-block. Here ‘It’ is denoted as
the maximum iteration times. Post-stage sub-decoder sequentially complete the computation.
But there are problems in the process: (1) As a result of the pipeline design, the throughput
increases P times. But it still can not reduce the decoding delay of every single code block. (2)
There are Le information transmission in the junction of pipeline, the complexity of which is very
high. Therefore, how to coordinate every sub-decoder is a major problem. To sum up, it is
uneconomical to adopt the pipeline structure.

 From another point of view, we can use another structure to achieve the same
performance compared with the pipeline structure. The new structure is illustrated in Figure 5.

Figure 5. The Structure of A New Way To Improve Throughout

Figure 5, the new structure is consist of two identical full-featured decoder in Figure 4.
The code block under decoding is allocated to the two decoder through input storage
coordinator with the method of operation in accordance with the ping-pong [7]. The result output
coordinator is responsible to output the decoding result with the correct sequence . Compared
with the pipeline structure, this new structure can achieve equal performance. But the this new
structure is more easy to control, and more scalable. Thus, in this paper, we use this new
structure to achieve the throughout scalability .

The SISO unit uses the Log-MAP algorithm[8] to calculate each status quantity,
Gamma, Alpha, Beta and Le, and store Le for iteration operation. The calculation process of
these parameters consists of two steps – forward recursive process and backward recursive
process. Forward recursive process need N/M cycles to get the result of Alpha and Gamma.

TELKOMNIKA ISSN: 2302-4046 

Turbo Code Design and Implementation of High-Speed Parallel Decoder (Yi Bo-nian)

2121

Here N denote code length, M denote the number of PU. Next, the backward recursive process
also use N/M cycles to calculate Beta and Le[9]. The forward and backward recursive process
are conducted in succession. To get the result of Alpha and Beta, you must use Gamma. But
Gamma can not be available in both the recursive process at the same time. The functional
diagram of SISO is illustrated in Figure 6 .

Figure 6. Function Diagram of SISO

Figure 7. Improved Status Update Calculation Circuit Diagram

In Figure 7, a register is inserted on the critical path by which the path delay greatly
reduced, and operation clock frequency improved. However, due to the calculation of a status
metric consumes two clock cycles ,making the above recursive process has to wait one clock.
Therefore, one waiting clock is wasted. Assuming that, after inserting a register, the operation
clock frequency doubles. But when taking the waiting clock into consideration, the overall
decoding speed only get a little raise[10].

5. Decoder performance
Under the condition of 8 PU structure, 6 iteration times, 6144 code length, each iteration

process consume (6144/8 * 4)=768*4 cycles. One SISO operation need full forward and
backward recursive process, consuming 768*2 cycles. One iteration operation containing two
SISO operation thus consumes 768*4 cycles. Therefore, the throughout of each PU is :

6250 10 768

10.4
768 4 6

Mbps
 


  (11)

In this formula, the clock frequency is 250MHz. So decoder with 8 PU can achieve

83.2Mbps throughout. If extend it according to Figure 4 and Figure 5, the throughout can reach
up to 166.4 Mbps [11]. The throughout has nothing to do with code segment length, making it
unrelated to the overall code segment length.

γ

α

α

β

γ

  ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 4, April 2013 : 2116 – 2123

2122

Considering 6144 code length, handling 10000 bits, then the delay of each decoder is :

6

100000
600

166.4 10
us



Figure 8 compare the performance between 6bit fixed point parallel algorithm and float
point serial algorithm under different iteration times, using Log-MAP .

Figure 8. performance Comparison Between Fixed Point Parallel Algorithm and Float Point

Serial Algorithm

From the simulation result, we can see fixed point parallel algorithm has about 0.2dB
performance loss regardless of iteration times. But it should be noted that in this simulation, the
code length is 6144. If the code length is less than that, the performance penalty will worsen.
The overall performance loss will largely beyond 0.2dB [12].

6. Conclusion
This paper designs and implements a high-speed Turbo decoder completely meeting

the LTE system demand based on the Xilinx Virtex-6 FPGA platform [13-14]. The decoder is
completely compatible with the standard LTE Turbo code. The code length and iteration times
can be configured. The code length can choose anyone among the 188 types. The iteration
times can be conFigured between 1 to 15. The throughout of this decoding system also meet
the LTE demands, beyond the maximum 100Mbps .

Reference
[1] Lance C Perez. A Distance Spectrum Interpretation of Turbo Codes. IEEE Transations On

Information Theory. 1996; 42(6).
[2] Rostislav (Reuven) Dobkin, Michael Peleg. Parallel Interleaver Design and VLSI Architecture for Low-

Latency MAP Turbo Decoders. IEEE Transactions On Very Large Scale Integration (Vlsi) Systems.
2005; 13(4).

TELKOMNIKA ISSN: 2302-4046 

Turbo Code Design and Implementation of High-Speed Parallel Decoder (Yi Bo-nian)

2123

[3] L Bahl, J Cocke, F Jelinek, J Raviv. Optimal decoding of linear codes for minimizing symbol error
rate. IEEE Transactions on Information Theory. 1974.

[4] Todd K Moon. Error Correction Coding Mathematical Methods and Algorithms.Published by John
Wiley & Sons Inc. 2005.

[5] G Montorsi, S Benedetto. Design of fixed-point iterative decoders for concatenated codes with
interleavers. IEEE Journal on Selected Areas in Communications. 2001.

[6] Xilinx, "Xilinx_tcc_decoder_3gpplte_a_ds675". 2009.
[7] Emmanuel Boutillon, Warren J Gross, P Glenn Gulak. VLSI Architectures for the MAP Algorithm.

IEEE Transactions On Communications. 2003; 51(2).
[8] A Nimbalker, KT Blankenship, B Classon, TE Fuja, DJ Costello. Inter-Window Shuffle Interleavers for

High Throughput Turbo Decoding. Proc. 3nd International Symposium on Turbo Codes & Related
Topics, Brest, France. 2003; 355–358.

[9] Perttu Salmela, Harri Sorokin, Jarmo Takala. A Programmable Max-Log-MAP Turbo Decoder
Implementation. Hindawi Publishing Corporation VLSI Design. 2008.

[10] A Abbasfar. Turbo-like Codes: Design for High Decoding. Springer. 2007.
[11] Byoung-Sup Shim, Seok-Jun Choi, Hyoung-Keun Park, Sun-Youb Kim, Yu-Chan Ra. A Study on

Performance Evaluation of the Asymmetric Turbo Codes. International Conference on Convergence
and Hybrid Information Technology. 2008.

[12] Ajit Nimbalker, T Keith Blankenship. Contention-Free Interleavers for High-Throughput Turbo
Decoding. IEEE Transactions On Communications. 2008; 56(8).

[13] Hanaa T El-Madany, Faten H Fahmy, Ninet MA El-Rahman, Hassen T. Dorrah Design of FPGA
Based Neural Network Controller for Earth Station Power System. TELKOMNIKA. 2012; 10(2): 281-
290.

[14] Hendra Setiawan, Yuhei Nagao, Masayuki Kurosaki, Hiroshi Ochi. IEEE 802.11n Physical Layer
Implementation on Field Programmable Gate Array. TELKOMNIKA. 2011; 10(1): 67-74.

