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Abstract 
Due to the high complexity Turbo decoding algorithm, implemented the hardware decoder logic of 

consumes more resources and storage resources, decode delay larger. In order to meet LTE systems, 
high reliable transmission of high data rate needs high speed Turbo decoder design faces enormous 
challenges. This topics select based on LTE system of parallel Turbo Code decoders hardware design and 
achieved as research direction, select FPGA (Virtex-6) as hardware design and achieved of platform, from 
Log-MAP algorithm of Sentinel of, and State measure value handed owned calculation in the of owned a of 
processing, and Diego generation decoding algorithm of parallel of, and parallel interwoven Manager 
design, and key path optimization technology, aspects analysis, design achieved has LTE Turbo Code 
high-speed parallel decoders. 
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1. Introduction  
Due to its good performance, after the introduction of Turbo Code [1, 2], it has attracted 

many researchers. There are mainly two kinds of algorithms in Turbo iterative decoding 
algorithms. One is Log-Map and Max-Log-MAP algorithm, the other is SOVA algorithm with 
lower complexity. All the researches mainly center on the decoding performance, 
implementation complexity, decoding suboptimal simplify, parallel decoding implementation, 
fixed point quantify on the performance of decoding.  

The encoding of Turbo code is very simple, no matter software implementation or 
hardware implementation. However, the decoding process is rather complex. The long decoding 
delay makes it a challenge to use it in practical engineering applications. FPGA manufactures 
like Xilinx and Altera have targeted IP core to solve this problem but they are too expensive, 
more than 15000 dollars. Furthermore, the targeted IP core can not be directly used in the 
design. Therefore, it is important to make Turbo decoding faster and more generic on FPGA 
platform. 
 
 
2. Turbo Decoding Algorithm 

Turbo decoding algorithm [3] mainly consists of two types: one is called SOVA evolved 
from Viterbi algorithm, the other is Log-MAP and Max-Log-Map evolved from MAP algorithm 
which achieves high performance. Due to its poor performance, we will not talk about the SOVA 
algorithm.  

 

 
 

Figure 1. The Structure of Turbo Iterative Decoding Algorithm 
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The two component decoder in Figure 1 all use SISO. SISO use the soft bit sequence to 
calculate the posterior probability of each bit. The most common SISO algorithm are MAP, Log-
MAP and MAX-Log-MAP algorithm. MAP algorithm is based on the symbol maximum posteriori 
probability decoding algorithm. For linear block coding is convolutional code, it can reduce the 
bit error rate to minimum. The BCJR algorithm can calculate the posteriori probability of Markov 
source going through discrete memoryless channel. Since the output of the convolutional 
encoder through a discrete memoryless channel constitute a Markov source, therefore the 
BCJR algorithm can be the maximum posteriori probability decoding algorithm for convolutional 
code [4].  

 Deduce the MAP decoding algorithm of Turbo code in detail. There are lots of 
multiplication in the MAP, therefore implement it directly on the hardware system is rather 
complex. While if implement it in the Logarithmic domain, the multiplication can be converted 
into addition and without any harm to the decoding performance.  

The following give the derivation of the algorithm. Denote ݔ௧ as the encoding output of 
system bit at time t , ܽ௧

௜ , ݅ ൌ 1,2 as the CRC at time t , ݎ௧
௜, ݅ ൌ 0,1,2 as the received data at time t, 

while ݎ௧
଴ denoted as system bit, ݎ௧

ଵ and ݎ௧
ଶ stand for CRC bit. 

 
),(log),( qpqp tt   (1) 

 

)(log)( ppA tt                                                            (2) 
 

)(log)( 11 qqB tt                                                              (3) 
 
The calculation steps of Log-MAP is as follows: 

start from t=1 , use the following formula (4) to calculate ),( qpt  
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When t=1, initialize the foward branch metric A and using formula(5) to calculate )( pAt , then 
store them. 
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When t=N+1, initialize the backward branch metric B and using formula(6) to calculate )( pBt  
from t=N to t=1. 
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Calculate LLR from K=0 to K=N-1 
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Then calculate ( )eL t using the calculated results tLLR  
 

0( )e a
t t t c tL L L R L L r                                                  (8) 

 

Use 
e
tL as the priori information of ),( qpt , then go to step (1) until the iteration of loop 

operation reach the maximum number. Make decision according to the tLLR
 in the final 

iteration process. 

Function )1ln(),max()ln( || yxyx eyxee   involves seeking maximum function 
and calibration ion function. Function f(x) can be implemented using lookup table. 

The Log-MAP algorithm only has addition operation, therefore it is easy to implement it 
on the hardware. The calculation of state metric in Log-MAP is an iteration process. The 
feedback path in the hardware is significant but also influence the maximum clock frequency. 
The calibration  function need an adder to modify it, which contribute to the path delay. The 
Max-Log-MAP algorithm doesn’t need any calibration function or lookup table, so it can 
significantly reduce the path delay, increase the maximum frequency clock. But this is at the 
cost of performance reduction due to approximate calculation. 

 
 

3. System Design 
3.1. Minimum Bit Width Quantify 
(1) Different Iteration Times 

Figure 2 show us the performance of Log-MAP algorithm under different conditions with 
code length 1024. We vary the test condition of float point, 6bit fixed point [5], 8bit fixed point 
and 4 iteration times, 6 iteration times, 8 iteration times.  

 

 
Figure 2. Performance of Log-MAP under Different Iteration Times and Bit Width 

 
 

According to Figure 2, under the condition of the same code length, the performance 
difference of two quantization methods is not affected much by the iteration times. With code 
length 1024, the performance of the 8bit quantization is almost equal to the float point pattern. 
The 6bit quantization is only 0.1dB reduction compared to the float point quantization.  
(2) Different Code Length 

This time, the iteration times is confirmed as 8. Under this condition, we vary the code 
length with 512,1024, and 6144. The quantization methods are the same with the above.  
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Figure 3. Performance of Log-MAP under Different Code Length and Bit Width 

 
 

From Figure 3, we can see that performance penalty of two different quantization is 
almost the same. The performance loss worsen as code length increases. The performance 
loss is about 0.1dB. 

In summary, we can see that under different iteration times or different code length, the 
differences between fixed point quantization and floating point quantization can be regarded as 
fixed. The 8bit quantization almost has no performance loss while the 6bit has 0.1dB. So in you 
design, if you attach great importance to the decoding performance, you can choose the 8bit 
quantization method. In this paper we choose the 6bit quantization method due to the only 8 or 
9 bit width in Xilinx FPGA RAM, regardless of the 0.1dB loss.  

 
3.2. Implementation of Lookup Table in Calibration Function 

In Log-MAP algorithm, the recursive formula  、  of is: 
  

|)(|_),max(),(max* 212121 xxcorrfunxxxx                                  (9) 
 

The calculation of LLR need to nest this formula 7 times, so it is one of the most basic arithmetic 
unit in Log-MAP. For the recursive of  , 
 

1 1 1x     
2 2 2x     
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Formula (10) is a calibration function. It need lookup table to implement it. Under the 

condition of 3bit fractional bit quantized input channel information, the number of available 
values are 22, fun_corr_table = [6,5,5,4,4,3,3,3,3,2,2,2,2,1,1,1,1,1,1,1,1,1]； while 2bit are 
9,fun_corr_table = [3,2,2,2,1,1,1,1,1]；  

 
 

4. FPGA Implementation 
LTE Turbo code interleaver is a QPP interleave. When the code block is equally divided 

into N = 0,1, ... code segments, each code segment can be achieved entirely without conflict 
interleaving, thereby performing parallel decoding. Wherein, parameters ଵ݂ and ଶ݂ are 
determined by the code block length K. Parallel decoder modules mainly includes input buffer 
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module, parallel PU module, interleaving/deinterleaving module. Parallel decoding unit PU and 
interleaving/deinterleaving module in the decoder are used to implement the interleaver and 
deinterleaver function. The input and output buffer module is used to complete parallel-serial 
conversion or serial-parallel conversion and to improve throughput. 

 
 

 
 

Figure 4. Function Diagram of Parallel Decoder 
 
 

In order to further improve the data throughput, pipelining structure can be used in the 
interior of each PU to implement iterative decoding [6]. For example, we choose four pipeline in 
each PU, each sub-decoder contains basic SISO unit to complete the basic operation process, 
external information storage RAM for interleaving and deinterleave also included. The first level 
sub-decoder complete the previous It/4 times iteration of one sub-block. Here ‘It’ is denoted as 
the maximum iteration times. Post-stage sub-decoder sequentially complete the computation. 
But there are problems in the process: (1) As a result of the pipeline design, the throughput 
increases P times. But it still can not reduce the decoding delay of every single code block. (2) 
There are Le information transmission in the junction of pipeline, the complexity of which is very 
high. Therefore, how to coordinate every sub-decoder is a major problem. To sum up, it is 
uneconomical to adopt the pipeline structure.  

 From another point of view, we can use another structure to achieve the same 
performance compared with the pipeline structure. The new structure is illustrated in Figure 5. 

 
 

 
Figure 5. The Structure of A New Way To Improve Throughout 

 

Figure 5, the new structure is consist of two identical full-featured decoder in Figure 4. 
The code block under decoding is allocated to the two decoder through input storage 
coordinator with the method of operation in accordance with the ping-pong [7]. The result output 
coordinator is responsible to output the decoding result with the correct sequence . Compared 
with the pipeline structure, this new structure can achieve equal performance. But the this new 
structure is more easy to control, and more scalable. Thus, in this paper, we use this new 
structure to achieve the throughout scalability .  

The SISO unit uses the Log-MAP algorithm[8] to calculate each status quantity, 
Gamma, Alpha, Beta and Le, and store Le for iteration operation. The calculation process of 
these parameters consists of two steps – forward recursive process and backward recursive 
process. Forward recursive process need N/M cycles to get the result of Alpha and Gamma. 
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Here N denote code length, M denote the number of PU. Next, the backward recursive process 
also use N/M cycles to calculate Beta and Le[9]. The forward and backward recursive process 
are conducted in succession. To get the result of Alpha and Beta, you must use Gamma. But 
Gamma can not be available in both the recursive process at the same time. The functional 
diagram of SISO is illustrated in Figure 6 .  

 
 

 
Figure 6. Function Diagram of SISO 

 

 
Figure 7. Improved Status Update Calculation Circuit Diagram 

 

In Figure 7, a register is inserted on the critical path by which the path delay greatly 
reduced, and operation clock frequency improved. However, due to the calculation of a status 
metric consumes two clock cycles ,making the above recursive process has to wait one clock. 
Therefore, one waiting clock is wasted. Assuming that, after inserting a register, the operation 
clock frequency doubles. But when taking the waiting clock into consideration, the overall 
decoding speed only get a little raise[10]. 

 
 

5. Decoder performance 
Under the condition of 8 PU structure, 6 iteration times, 6144 code length, each iteration 

process consume (6144/8 * 4)=768*4 cycles. One SISO operation need full forward and 
backward recursive process, consuming 768*2 cycles. One iteration operation containing two 
SISO operation thus consumes 768*4 cycles. Therefore, the throughout of each PU is : 

 
6250 10 768

10.4
768 4 6

Mbps
 


                                                      (11) 

 
In this formula, the clock frequency is 250MHz. So decoder with 8 PU can achieve 

83.2Mbps throughout. If extend it according to Figure 4 and Figure 5, the throughout can reach 
up to 166.4 Mbps [11]. The throughout has nothing to do with code segment length, making it 
unrelated to the overall code segment length.  
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Considering 6144 code length, handling 10000 bits, then the delay of each decoder is : 

6

100000
600

166.4 10
us

  

Figure 8 compare the performance between 6bit fixed point parallel algorithm and float 
point serial algorithm under different iteration times, using Log-MAP .  

 
 

 
Figure 8. performance Comparison Between Fixed Point Parallel Algorithm and Float Point 

Serial Algorithm 
 
 

From the simulation result, we can see fixed point parallel algorithm has about 0.2dB 
performance loss regardless of iteration times. But it should be noted that in this simulation, the 
code length is 6144. If the code length is less than that, the performance penalty will worsen. 
The overall performance loss will largely beyond 0.2dB [12].  

 
 

6. Conclusion  
This paper designs and implements a high-speed Turbo decoder completely meeting 

the LTE system demand based on the Xilinx Virtex-6 FPGA platform [13-14]. The decoder is 
completely compatible with the standard LTE Turbo code. The code length and iteration times 
can be configured. The code length can choose anyone among the 188 types. The iteration 
times can be conFigured between 1 to 15. The throughout of this decoding system also meet 
the LTE demands, beyond the maximum 100Mbps .  
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