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 In long-haul optical communication systems consisting of single-mode fiber 
spans and fiber amplifiers, such as an erbium-doped fiber amplifier, signal 
distortion causes performance to deteriorate because of group velocity 
dispersion and fiber nonlinearity. A combination of dispersion management 
and optical phase conjugation is an effective technique of compensating for 
the distortion. In an optical link configured with this combination,  

the dispersion map mainly affects the compensation for the distorted optical 
signals. Improvements in system performance have been reported for various 
types of dispersion maps. In this study, a symmetric type of dispersion map 
with respect to the midway optical phase conjugator is proposed. The effect 
of the proposed dispersion maps on the compensation for the distorted 24 
channel × 40 Gbps wavelength-division-multiplexed signals was assessed 
through numerical simulation. It was confirmed that antipodal-type 
dispersion maps are most appropriate for the compensation, as well as for the 

flexibility of the link configuration. 
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1. INTRODUCTION  

The change in the temporal shape and the spectral change of the optical signal resulting from  
the chromatic dispersion and Kerr effects of optical fiber disrupt the expansion of the transmission capacity 

and transmission length of optical communication systems [1-3]. The temporal change gives rise to peaks and 

valleys in the signal amplitude. Moreover, in ultralong-haul and ultrahigh-data-rate systems, the interaction 

of the new frequencies induced by an intensity-dependent phase shift, which is produced by the Kerr 

nonlinear effect, and the fiber chromatic dispersion cause signal distortion [4]. Dispersion management (DM) 

is very attractive for compensating for the temporal distortion of the optical signal caused by group velocity 

dispersion (GVD) [1, 5-9]. In a dispersion-managed link, the proper length of the dispersion-compensating 

fiber (DCF) is used to eliminate or mitigate large positive dispersion accumulated in single-mode fiber 

(SMF). The DCF is a specially designed fiber with a negative dispersion coefficient; in contrast, the standard 

SMF has a positive dispersion coefficient of 17 ps/nm/km. The DCFs are added into the special fiber spans in 

the lumped DM link, and these are inserted into every fiber span in the in-line DM link. However, for a 
wavelength-division-multiplexing (WDM) system, it is difficult to compensate for all the channels 

completely, because the amount of accumulated dispersion of each channel varies with the wavelength [10]. 

In an ultralong-haul and ultrahigh-data-rate system, although the signal distortion caused by GVD is 

compensated for by DM, Kerr nonlinear effects cause the system performance to deteriorate, especially at 

high input power. In this system, a large received power is required for error-free detection [11]; as a result, 
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the signal distortion resulting from self-phase modulation (SPM), which is the dominant Kerr effect and is 

caused by the nonlinear dependence of the refractive index on the signal intensity, is introduced. 

Fortunately, optical phase conjugation is a promising solution for compensating for the SPM-

induced distortion [4, 12-14]. Mid-span spectral inversion (MSSI), where an optical phase conjugator (OPC) 

is placed close to the midpoint of the link so that the fiber nonlinearity in the second half of the link mitigates 

the fiber nonlinearity in the first half [13, 14], is an attractive technique of compensation for the distorted 

signal caused by the Kerr effect. The MSSI technique promises to be transparent to the modulation format 

[4]. The MSSI technique also makes dispersion compensation possible by placing an OPC that inverts  

the spectrum and the phase of optical signals distorted by the chromatic dispersion at the middle of a 

complete transmission link. If phase-conjugated optical signals pass through the same amount of dispersion 
to the end of the link, phase distortion can be recovered to the initial state, exactly the same as the transmitter 

output [15]. However, the OPC needs an optimal position, because symmetrical distribution of power and 

local dispersion with respect to OPC position are required.  

Various solutions of combining DM and MSSI have been reported to complement the disadvantages 

of each technique [16-18]. The mutual interplay between GVD and SPM depends on the sign and amount of 

residual dispersion [11]. Additionally, the SPM-induced power margin depends on the dispersion map, as 

well as the DCF’s position with respect to the SMF [11, 19]. Authors also have shown the dependence of 

compensation degree on the deployment of the SMF and DCF in a dispersion-managed optical link combined 

with the OPC [20, 21]. In this work, to compensate for the WDM signal distortion caused by the combined 

effect of GVD and SPM, the various and special dispersion maps are proposed in the dispersion-managed 

optical link combined with MSSI. All of the dispersion maps proposed are based on the triangular shape in 
each half transmission link with respect to the midway OPC. Each half transmission link means the whole 

fiber spans from the first fiber span to the midway OPC (this half is called the ―former half section‖) and 

from the midway OPC to the last fiber span (this half is the ―latter half section‖). Four dispersion maps, 

classified by the symmetric form with respect to the midway OPC, were investigated through numerical 

simulation to investigate the contribution of compensating for the distorted 960-Gbps WDM signals. 

 

 

2. THEORETICAL MODEL AND PERFORMANCE ASSESSMENT METHOD  

The silica optical fibers, including the SMF and DCF, are a lossy, dispersive, and intensity-

dependent nonlinear medium. Only one expression for the propagation of the optical signal in the silica fiber 

having these features is the nonlinear Schrödinger equation (NLSE) [22]. 
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where j, k = 1, 2, … , 24 (j ≠ k) is the WDM channel number, Aj represents the slowly varying 

amplitude of the j-th channel’s pulse envelope, z is the longitudinal coordinate, i.e., transmission distance,  

α is the attenuation coefficient of the fiber, β2j is the dispersion parameter, β3j is the dispersion slope, γj is the 

nonlinear coefficient, and T = t-z/vj is the time measured in a retarded frame at the group velocity vg. The last 

two terms of Eq. (1) express the effect of nonlinearity, including SPM and cross-phase modulation (XPM). In 

an optical link consisting of the standard SMF, XPM has less impact on the system performance, because of 

the high dispersion coefficient of the standard SMF and, hence, its high walk-off [11]. The effect of four-

wave mixing (FWM), which is another Kerr effect, on the system performance is neglected because this 
phenomenon is effectively suppressed by the high dispersion of the standard SMF. 

In long-haul transmission using inline amplification, such as an erbium-doped fiber amplifier 

(EDFA), the additional impairment, the Gordon–Mollenauer (GM) effect, is introduced [4, 23].  

The GM effect occurs because of the nonlinear interplay between the signal and the amplified spontaneous 

emission (ASE) from inline amplifiers. The influence of the accumulated ASE noise of the EDFAs and, 

consequently, the GM effect on the system performance is excluded in this research to focus on the 

compensation analysis of the WDM signal distortion resulting from the GVD and SPM effects through the 

proposed dispersion maps. An easy way to assess the optical pulses that deteriorated because of the GVD and 

SPM effects is using an eye diagram. The assessment parameters obtained from the eye diagram include the 

eye-opening penalty (EOP) and quality factor (Q-factor). From the eye diagram, the Q-factor is calculated 

using the mean values and the standard variations of the mark (―1‖) pulses and of the space (―0‖) pulses as 

follows [24]. 
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where I1 and I0 represent the mean values of ―1‖ pulses and ―0‖ pulses, respectively, which are 

obtained at every timing clock period, and σ1 and σ0 represent the standard variations of ―1‖ pulses and ―0‖ 

pulses, respectively. Generally, 6 is the standard value of the Q-factor for the quasilinear system [24]. Thus, 

Q-factor = 6 is used as the reference value in the simulation. That is, if the Q-factor has a value of more than 

6, this case is identified as ―good‖ compensation. 

 

 

3. SIMULATION METHOD 
The system configuration, including the dispersion-managed optical link embedded in the midway 

OPC for simulation, is depicted in Figure 1(a). The dispersion-managed link comprises 50 fiber spans.  

Thus, m is to be 25, and n is to be 50, as in Figure 1(a). The pre-DC and post-DC in Figure 1(a) mean the pre-

dispersion-calibrator and post-dispersion-calibrator, respectively. The dispersion calibrators play the role of 

the controller of the dispersion amount accumulated in all fiber spans. In other words, they finally control  

the residual dispersion accumulated across 24 fiber spans of each half section by adjusting the length of the 

DCF in the first/last fiber span. 

 

 

 
 

Figure 1. The proposed WDM system and dispersion-managed link with the midway OPC  

for transmitting 960-Gbps 

 
 

As mentioned earlier, it is important to deploy the SMF and the DCF in each fiber span for good 

compensation. In every fiber span of the former half section (FHS), the DCF precedes the SMF; however, the 

reverse order is kept in the latter half section (LHS) [see Figure 1(b) and 1(c)]. This deployment is for a near-

perfect symmetry of dispersion distribution with respect to the midway OPC and for the proper position of 

the pre/post-DC. The parameters of the SMF and the DCF are summarized in Table 1. The length of the DCF 

depends on the residual dispersion per span (RDPS). The dispersion of one fiber span is completely 

compensated for when the DCF length is 13.6 km, i.e., RDPS = 0 ps/nm in this case. However, if the DCF 

length is less (greater) than 13.6 km, the RDPS is positive (negative). Furthermore, the slope of the straight 

line in the dispersion map plotted in Figure 2 is determined by the magnitude of the RDPSs over several fiber 

spans. Two cases of the RDPS (+130/-130 and +1300/-1300 ps/nm) are considered for investigating the 

effect of the slope of the dispersion map on the compensation. The lengths of the DCFs from span #2 to span 
#25 and span #26 to span #49 are set to be 12.3 and 14.9 km (which correspond to RDPSs of +130 and -130 

ps/nm — represented as ―L(low)-slope‖) or to be 0.6 and 26.6 km (which correspond to RDPSs of +1300 and 

-1300 ps/nm — represented as ―H(high)-slope‖). Four types of dispersion maps made from the 

aforementioned RDPSs are plotted in Figure 2. These are named ―S-shape,‖ ―S-1-shape,‖ ―M-shape,‖ and 

―W-shape‖. The signs of RDPSs are reversed at span #13 and span #38 in each half section for every 

dispersion map. In Figure 2, the dispersion maps of the S- and S-1-shapes are pictorially represented by using 

the different RDPS value with M- and W-shapes, to distinguish between these shapes.  
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Figure 2. The dispersion maps investigated in this study 

 

 
Table 1. Fiber parameters 

Parameters SMF DCF 

Length 80 km Unfixed 

Attenuation coefficient 0.2 dB/km 0.6 dB/km 

Dispersion coefficient 17 ps/nm/km -100 ps/nm/km 

Dispersion slope 0.07 ps/nm2/km 0.09 ps/nm2/km 

Nonlinear coefficient 1.35 W-1km-1 5.06 W-1km-1 

 

 
In the dispersion-managed link for pseudolinear systems, the optimal net residual dispersion (NRD) 

should be chosen to be approximately 0 ps/nm rather than 0 ps/nm [25]. This result means that the special fiber 

span has to adjust the optimal NRD, because the total residual dispersion accumulated through 24 fiber spans 

consisted of each half section becoming 0 ps/nm in all dispersion maps. The first and last fiber spans were 

selected as the special fiber spans for this role — the pre-DC and post-DC, respectively. The pre-DC is obtained 

the following way: the residual dispersion amount is determined by adjusting only the DCF’s length of the first 

fiber span and simultaneously the perfect dispersion elimination in LHS by fixing the DCF’s length of the last 

fiber span to be 13.6 km. The DCF’s length of the first fiber span is varied from 13.1 to 14.1 km, correspond to 

the residual dispersion amounts from 50 to -50 ps/nm, to find the optimal value. However, the post-DC is 

obtained the following way: the residual dispersion amount is determined by adjusting only the DCF’s length of 

the last fiber span and simultaneously the perfect dispersion elimination in FHS by fixing the DCF’s length of 
the first fiber span to be 13.6 km. The configuration of the midway OPC is shown in Figure 1(d). Highly 

nonlinear dispersion-shifted fiber (HNL-DSF) OPC was selected as a phase conjugator for MSSI. The features 

of HNL-DSF as the nonlinear medium of the OPC are listed in Table 2. The power and wavelength of the pump 

light for generating the phase-conjugated waves are assumed to be 18.5 dBm and 1549.75 nm, respectively. 

 

 

Table 2. Features of HNL-DSF 
Parameter Value 

Loss 0.61 dB/km 

Nonlinear coefficient 20.4 W-1km-1 

Length 0.75 km 

Zero dispersion wavelength 1,550 nm 

Dispersion slope 0.032 ps/nm2/km 

 

 

Each transmitter (Tx) generates an independent 40-Gbps 127(=27-1) pseudorandom bit sequence. 

The continuous light waves from each distributed feedback laser diode are injected into the external optical 

modulator. The center wavelengths of each Tx are selected from 1550 to 1568.4 nm. These are allocated at 

an interval of 0.8 nm (100 GHz) according to ITU-T recommendation G.694.1. Finally, return-to-zero (RZ) 

pulses are generated as the modulated format from the external optical modulator. The output electric field of 
the RZ format is assumed to be a second-order super-Gaussian pulse as given by 
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where T0 is the half width at the 1/e-intensity point, and m is the degree of the super-Gaussian pulse. 

It is assumed that m is 2 and super-Gaussian pulses have a 10-dB extinction ratio, have a duty cycle of 0.5, 

and are chirp free. The pulse envelope amplitude Aj(z, T) of the j-th channel in (1) is given by 
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where, P0 is the peak power. 

The RZ signals of 24 channels are multiplexed in an arrayed-waveguide grating multiplexer and 

then launched into the dispersion-managed link. The distorted optical signals owing to the chromatic 

dispersion and Kerr nonlinearities of FHS reach the midway OPC. Through the FWM process of the input 

waves and the pump light, the conjugated waves with wavelengths of 1549.5–1528.5 nm are generated in in 
the midway OPC. The ratio of the FWM product power to the input signal power is defined as conversion 

efficiency [26]. We confirm that the original and conjugated wavelengths belong to the 3-dB bandwidth 

(from 1526 to 1574 nm). 

The 24 conjugated multiplexed channels are propagated through LHS of the link, demultiplexed, 

and sent into each receiver (Rx) for direct detection. Each Rx consists of an EDFA as a preamplification 

stage, an optical filter, a photodetector, a pulse-shaping Butterworth filter, and a decision circuit. The noise 

figure of the EDFA is 5 dB, and the bandwidth of the optical filter is 1 nm in this study. Modeling of the 

photodetector is based on the PIN diode. The receiver bandwidth is assumed to be 0.65 times 40 Gbps. 

 

 

4. SIMULATION RESULTS AND DISCUSSIONS 

Eye diagrams for the pulses received through the proposed DM link with NRD = 10 ps/nm by pre-
DC are given in Figure 3. These eye diagrams are obtained under the same conditions: RDPS = ±1300 ps/nm 

and launch power of -4 dBm. Generally, the eye opening depends on the input power level. In addition to the 

result as we known, it was confirmed from the results in Figure 3 that the eye opening is also affected by the 

dispersion map, i.e., the distribution of RDPSs. It was also confirmed that the dispersion map with an 

antipodal-type configuration, including S-shape and S-1-shape, is advantageous to compensate for the 

distortion of WDM channels rather than the bilateral-symmetry type, including M-shape and W-shape. 

Figure 4 shows Q-factors of the worst channels as a function of NRD for inducing the best NRD 

value related to DC. The results of Figures 4(a) and (b) were obtained under the condition of a launch power 

of -3 dBm. Generally, the best NRD values are 10 or -10 ps/nm; however, these values are affected by the 

RDPS value, i.e., the performance difference of WDM channels according to the optimal NRD clearly 

appears in the case of the H-slope rather than the L-slope (the performances at each optimal NRD in the case 
of the H-slope are very different from those for the L-slope). The Q-factor in the bilateral-symmetry type, 

i.e., M- and W-shaped dispersion maps, is significantly lower than the distributions of the antipodal type. 

This feature appears for all launch powers. Therefore, we should mainly focus on the compensation 

characteristics in S- and S-1-shaped dispersion maps. 
 
 

 
 
 

 

  
 

Figure 3. Eye diagrams of the worst channel with P0 = -4dBm 
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(a) L-slope (b) H-slope 

 

Figure 4. NRD versus Q-factor in case of -3 dBm of the launch power 

 

 

Figure 5 illustrates Q-factors of the worst channels as a function of the launch power in the case of 

the fixed NRD with 10 or -10 ps/nm. The ―uniform‖ legend entry in Figure 5 refers to the DM link consisting 

of RDPS = 0 ps/nm for each fiber span, for comparison with the proposed dispersion maps. It is evident that 

the compensation of the distorted WDM channels in S- and S-1-shaped dispersion maps is superior to a 

uniform distribution. The notable feature from Figure 5 is that the compensation through the S-shaped 

dispersion map more heavily depends on the slope of the dispersion map than the S-1-shaped dispersion map, 

i.e., the difference of Q-factor between L-slope and H-slope in the S-shape is larger than in the S-1-shape. 

Therefore, the result in Figure 5 shows that an S-1-shaped dispersion map can provide stable compensation 

less sensitive to the details in the dispersion-managed link design, while the best compensation is obtained by 
using the S-shaped dispersion map with the H-slope. 

 

 

  

 

Figure 5. Launch power versus Q-factor of the worst channel: S-shaped dispersion map (a) and S-1-shaped 

dispersion map (b) 

 

 

The results in Figure 4 show that the Q-factor of the worst channel is more than 6 at the various 

NRD values, including the optimal NRD values of 10 and -10 ps/nm. This result means that it is not 

necessary to keep the optimal NRD when considering the flexible configuration of the DM link. The NRD 
value result of a Q-factor above 6 is defined as the effective NRD range to design a flexible DM link.  

Figure 6 illustrates the worst channel’s effective NRD ranges as a function of the launch power, in the three 

cases of all DM links. The effective NRD range is a contour form — that is, if the values of the x- and y-axes 

within the contour are selected as the launch power and the NRD of the special DM link, respectively, the 

WDM channels compensated by the DM link with the midway OPC have a Q-factor higher than 6. 
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Figure 6. Effective NRD ranges of the worst channel as a function of the launch power 

 

 

The contour area of the DM link configured with an S-shaped dispersion map of the H-slope is 
widest among all proposed DM links. This dispersion map is the best way to establish the flexible DM link. 

The product of NRD and (launch) power is used as the quantitative factor for investigating the effect of each 

dispersion map on the flexibility. This factor is identical to the area of contour, such as in Figure 6.  

The product of NRD and power for the dispersion maps of the antipodal type, as well as the uniform 

distribution, is plotted in Figure 7. The product of NRD and power of all the proposed antipodal-type 

dispersion maps is remarkably broader than a uniform distribution, irrelevant of the slope of the dispersion 

map. In all cases, pre-DC is advantageous for flexible DM link design compared with post-DC. In view of 

the slope of the dispersion map, the high slope (i.e., ±1300 ps/nm) is superior to the low slope. The results of 

Figure 7 show that it is necessary to compress and expand the distorted WDM channels further to improve 

the compensation effect in the DM link configured with antipodal-type dispersion maps. 

 
 

 
 

Figure 7. Product of NRD and power 
 

 

5. CONCLUSION 

In this study, the effects of dispersion maps of the antipodal and bilateral-symmetry types on the 

compensation for the distorted 960-Gbps WDM channels in the DM link with midway OPC were 

investigated. Generally, the antipodal-type dispersion maps are more highly effective for the compensation 

than the bilateral-symmetry type. In a DM link configured with dispersion maps of the antipodal type, pre-

DC is more advantageous for flexible setup of the DM link than post-DC. It was also confirmed that the 

flexibility of the link design is more improved as the slope of the dispersion map increases in the dispersion 

maps of the antipodal type. Consequently, among the proposed dispersion maps, the S-shaped dispersion map 

with a high slope is the best case for compensation and link flexibility. 
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