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 Differential evolution (DE) is a highly effective evolutionary algorithm. 
However, the performance of DE depends on strategies and control 

parameters. The combination of many strategies helps balance  
the exploitation and exploration of DE. In this study, a multi-population 
based on k-means clustering is proposed to realize an ensemble of multiple 
strategies, thereby resulting in a new DE variant, namely KSDE, where 
similar individuals in the population implement the same mutation strategies, 
and dissimilar subpopulations migrate information through the soft island 
model (SIM). Firstly, the population is virtually divided into k 
subpopulations by the k-means clustering algorithm. Secondly, the individual 
specific mutation scheme is selected from a strategy pool by random method. 

Finally, the migration of subpopulation information is done using the soft 
island model. The performance of the KSDE algorithm is evaluated on 13 
benchmark problems. The experiments show that KSDE algorithm improves 
the performance of the DE algorithm. 
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1. INTRODUCTION 

Differential evolution (DE) is a simple and efficient evolutionary algorithm (EA) for optimization 

problems proposed by Price and Storn [1]. Recently, DE has been widely used in diverse fields, such as pattern 

recognition [2], artificial neural networks [3], image processing [4], and electronics and communication 

engineering [5]. The DE performance mainly depends on its trial vector generation strategy (i.e., mutation and 

crossover operators) and its control parameters (i.e., population size NP, scaling factor F, and crossover control 

parameter CR). Appropriate trial vector generation strategies and control parameter settings are helpful for 
improving the performance of DE. Recently, the multi-island model is to maintain population diversity to 

improve the performance of the DE algorithm. The information exchange among islands can maintain the 

diversity of the entire population and balance the exploitation and exploration capabilities. The soft island 

model approach was applied to evolutionary algorithms to improve the performance of the algorithm [6].  

Based on these considerations, a novel DE algorithm, namely the differential evolution algorithm of 

soft island model based on k-means clustering (KSDE), was proposed. In KSDE, the population is classified 

into a number of clusters by the k-means cluster algorithm. Consequently, a more suitable mutation strategy 

may be selected randomly to match different clusters. Finally, to improve the diversity of the population,  

the KSDE used the soft island model to migrate individuals. To evaluate the effectiveness of KSDE,  

the proposed KSDE framework was conducted on 13 benchmark functions with 30, 50, and 100 variables. 

Comprehensive experimental results indicate that KSDE is an effective and efficient DE variant. 
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The remainder of this paper is organized as follows. Section 2 introduces the classic DE algorithmic. 

Section 3 reviews the related works in literature. The proposed DE algorithm, namely KSDE, is presented in 

detail in Section 4. Section 5 gives the experimental results. The last section, Section 6, is devoted to 

conclusions and future work. 

 

 

2. DIFFERENTIAL EVOLUTION 

Differential evolution is used to solve the real number optimization problem. In this paper,  

the object function can be expressed as f(x), x= (x1, x2, …, xD), with D denoting the dimension of space.  

At first, the NP population x is randomly generated. Hence, each vector of the xi in G generation can be 
generated by  

 

            (     ) (1) 

 

where rnd[0, 1] is a random number, xi, j [Li, Ui]. 

 

2.1.  Mutation 
After initialization, a donor vector vi is produced with respect to x i . At the G generation, vi can be 

generated through the following mutation strategies of (2)-(6). 

 
a) DE/rand/1: 

 

             (           ) (2) 

 

b) DE/best/1: 

 

            (       ) (3) 

 

c) DE/target-to-best/1: 

 

            (            )    (           ) (4) 

 
d) DE/best/2 

 

               (           )    (           ) (5)  

 

e) DE/rand/2  

 

             (           )    (           ) (6) 

 

Where i=1, 2, …, NP, random integer r1, r2, r3, r4, and r5 [1, NP] are mutually different, which are 

different from the index i. The scaling factor Fi [0, 1] is a positive control parameter for scaling  

the difference vector. The xbest is the best vector with the minimum fitness at generation G. 

 

2.2. Crossover 
After the noise vector was generated through mutation, DE performs a binomial crossover on  

the target vector xi and the noise vector vi to generate a trial vector ui = (ui,1, ui,2,·· ,ui,D). The binomial 

crossover is defined as follows: 
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where j = 1, 2,…, D, rnd  [0,1] is a uniformly distributed random number and jrnd   [1, 2,…, D] is a 

randomly chosen index, which ensures that ui,j gets at least one variable from the donor vector  

CR   [0,1]. 
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2.3. Selection 
Finally, a greedy selection scheme is used to choose the best vector that would survive to  

the next generation. A greedy selection scheme is described as 

 

, ( ( ) ( ))

,

i i i

i

i

u if f u f x
x

x otherwise


 


 (8) 

 

where f (.) is a function with minimizing feature. 

The DE includes three steps, namely, mutation, crossover, and selection, which are repeated 

generation after generation until a termination criterion is satisfied. 

 

 

3. THE PREVIOUS WORK 

Differential evolution (DE) algorithm is an efficient evolutionary algorithm over continuous spaces. 

However, the performance of the DE algorithm depends on mutation, crossover strategies, and control parameters 

(NP, F, and CR). Generally, the appropriate selection of strategies and parameters may improve the performance of 

the DE algorithm. Because the best strategies and parameters may vary for optimization problems during the 
evolutionary process, it is difficult to find the appropriate strategies and parameters. In recent years, many researchers 

have proposed various empirical guidelines for choosing strategies and parameters depending on the problem. 

Some research work focuses on mutation vector generation strategies. The standard DE algorithm 

employs DE/rand/1 strategy which focuses on exploration. To improve the exploitation of DE,  

the best individual in the current population is selected in the mutation strategies, such as DE/best/1  

and DE/rand-to-best/1. The mutation strategies relying on the best individual are faster for easier 

optimization problems, but become unreliable when solving highly multi-modal problems.  

Extensive researchers have been done on the appropriate parameter setting of DE. CR controls  

the mutation individual number in the current population. A large CR speeds up convergence. Extensive 

experimental results show that the right initial choice was CR = 0.1; nevertheless, CR = 0.9 or 1.0 could be tried to 

increase the convergence speed. In [7], a good value of CR was said to lie in [0.3, 0.9]. F is generally selected from 

[0.5, 1] [8]. A larger value of F increases the probability of getting away from a local optimum. Therefore, to avoid 
the tuning of trial-and-error, various techniques have been developed. Some parameter adaptation strategies were 

proposed, such as linear reduction [9] and random sampling [10]. A self-adaptation scheme (SDE) [11] is 

introduced, which uses the normal distribution N(0.5, 0.15) to generate CR randomly for each individual, where F 

is similar to the adaptation of CR. Brest et al. [12] proposed a self-adaptation scheme (jDE), in which parameters F 

and CR were encoded into the individuals and were adjusted in the process of DE. Biswas et al. [13] proposed a 

teaching- and learning-based self-adaptive DE (TLBSaDE) in which F was sampled from N(0.5, 0.3) and CR was 

picked from N(CRm, 0.1). JADE [14] uses a control parameter adaptation strategy based on updating the 

parameters of the probability distributions from which the values of F and Cr are sampled. 

To improve the performance of DE algorithm, the parameter control and adaptive strategy has been 

explored in DE. A self-adaptive DE algorithm (SaDE) [15] is proposed, in which the strategies  

and the control parameter is self-adapted based on their potential to generate valuable solutions. CoDE [16] 
improves the performance of DE by combining several effective trial vector generation strategies with some 

suitable control parameter settings. 

The concept of “island models” has been introduced to improve the performance of the evolutionary 

algorithm in several studies. MPCCA [17] is a multi-population based cooperative co-evolutionary algorithm 

to solve the multi-objective problem, in which a population is divided into multiple subpopulations with 

respect to its different direction vectors. Wu et al. [18] proposed a multipopulation-based approach (MPEDE) 

to realize an ensemble of multiple strategies that simultaneously consist of three mutation strategies, i.e., 

“current-to-pbest/1,” “current-to-rand/1,” and “rand/1”. Also, the DE algorithm was used optimization in  

[19-23]. DE algorithm was used as an optimization tool in many fields, i.e., tasks scheduling problem and 

data stream clustering, to improve its accuracy, security, and reliability. 

 

 

4. THE PROPOSED ALGORITHM 

In this section, a new DE algorithm, KSDE, is proposed, which applies the k-means clustering algorithm to 

divide the population into k subpopulations and which uses SIM to transfer information between subpopulations. 

After splitting the population into k subpopulations, multiple strategies are implemented to subpopulations. In this 

paper, three mutation strategies are chosen. Firstly, the “DE/rand/1” and “DE/rand/2” are selected. According to the 

characteristics of a subpopulation, a new mutation strategy is proposed to generate a mutation vector, such as (9). 
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        (     )    (       ) (9) 

 

Where the real 
1r

a x and 
3r

b x  chosen randomly 

To improve search diversity, the SIM is used to transfer information between populations. Firstly, 

the individual indi was found to belong to the island pi. Subsequently, the vector r can be selected from either 

the current island or any island with probability P. The number m of vector r is determined by the algorithm. 

In this paper, m=5 is set. The SIM flow chart is shown in Figure 1. 

 

 

rnd<P

Randomly select ir p

ir p

True

Randomly selectFalse

Input individual 

indi

Start

     Find    i iind p

 
 

Figure 1. The SIM flow chart 

 

 

Based on the above analysis, a novel DE variant, namely KSDE, is proposed, the primary key of 

which is to implement the same mutation strategy to the island with similar individuals, and SIM to the 
information exchange between islands. The pseudocode of the KSDE algorithm is presented in Algorithm 1. 

KSDE algorithm has five input parameters, namely population size (NP), dimension (D), benchmark 

function (f), and integers k and m. The global optimal best is the algorithm return. At lines 1 and 2 of algorithm 

1, the population p and individual values fit are initialized. In line 3, a mutation strategy pool is built. In this 

paper, three strategies are chosen, namely as shown in (2), (5), and (9). In lines 4 and 5, the whole population 

evolution is controlled by the function to evaluate FES. At line 6, the population is split into k subpopulations 

according to the individual location. In this paper, parameters F and CR are sampled from the Gaussian 

distribution. The scaling factor F is sampled from the distribution N(0.5, 0.3) and N(0.9, 0.1) in line 7.  

To improve the search diversity, m individuals are selected by SIM in line 8. At lines 9 and 10,  

the subpopulation pi is randomly assigned the mutation Spj to generate the mutation vector. Finally, the KSDE 

algorithm performs the crossover and selection operation and returns the global best fitbest. In the KSDE 
algorithm, multi-strategy is beneficial to improve population exploration ability, with the SIM enhancing 

population search diversity. Therefore, KSDE improves the exploration and exploitation of the population. 

 

 
Algorithm 1: KSDE algorithm 

Input: NP, D, f, k, m 

Output: The population’s best solution: fitbest 

1. Generate the population p by the equations (1) 

2. Calculate the individual function values fit 

3. Strategy pool Sp={Sp1, Sp2, …, Spn} 

4. FES=NP 

5. while FES<=NP*1000 

6. The population p is divided into k subpopulation by k-means, p={p1, 

p2, …, pk} 

7. F=randn(0.5,0.3), Cr=randn(0.9,0.1) 

8. Pick r1, r2, …, rm using SIM 

9. Randomly combine Spj and pi to Si,j, i[1, k], j[1, n] 

10. pi implements the strategy Spj and generates noise vector 

11. Apply Equation 7 to generate trial vector 

12. Apply Equation 8 to select the best individual for the next generation 

13. end while 

14. Return fitbest 
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5. EXPERIMENT AND RESULT ANALYSIS 

5.1.  Benchmark functions and experimental setting 
To evaluate the performance of the proposed SKDE, a set of 13 benchmark functions [24] are 

chosen for the experiment. Among the 13 functions, f1-f5 are unimodal. f6 is the step function while f7 is  

the noisy function. f8-f13 are multimodal. During evolution, excellent individuals can be preserved by 

evaluating function values. For all experiments, the parameters of all algorithms are set as follows unless  

a change is mentioned: 
a) Dimension: D = 30, 50, 100 

b) Population size: NP = 100 

c) Scaling factor: F = N(0.5, 0.3) 

d) Crossover: CR = N(0.9, 0.1) 

e) The termination criterion of function evaluations  

(MaxFES): MaxFES=10E+4 

Moreover, each function in each algorithm runs 25 independently. All the experiments are carried 

on a computer with 3.4GHz quad-core Processor and 16GB RAM under Windows 10. For the results of each 

algorithm, the average and standard values of the function are recorded separately. To further verify  

the result, Wilcoxon’s statistical tests are conducted [25]. 

 

5.2.  Result and analysis of comparison with basic DE 

In this section, the superiority of the proposed algorithm is shown by comparing the KSDE 

algorithm with four other state-of-the-art DE variants, namely, CoDE, jDE, JADE, and MPEDE. In the 

experiments, the control parameters F and CR of these four DE variants consist of the original literature,  

with MaxFES in all algorithms set to NP*1000. Table 2 shows the experiment comparison results of 25 runs 

on 13 functions. 

Table 2 shows the results of the function mean and standard deviation obtained by the KSDE 

and other advanced DE variants for 25 independent runs. As for the functions f1-f13, apart from f6 and f8, 

KSDE exhibits the best performance among the four algorithms. This is because KSDE could improve  

the population diversity by migrating individual information among different groups.  

In addition to the above analysis, the Friedman test [26] was conducted on the experimental results 
for all dimensions. The average ranking of the five DE algorithms is presented in Table 1. The smaller 

average ranking value indicates better performance. Table 1 shows that KSDE is the best one, improving  

the performance of the DE algorithm. 

The mean ranking comparing five algorithms is obtained to visualize their differences. Figure 2 

shows the results considering all functions. One can observe that KSDE is the instance that achieves the best 

results in all functions. 

 

 

Table 1. Average ranking based on the Friedman test 
Algorithm D CoDE jDE JADE MPEDE KSDE 

Ranking 30 3.35 3.73 2.38 4.38 1.15 

50 3.58 3.62 2.58 4.00 1.23 

100 3.65 3.12 3.65 3.54 1.04 
 

 
 

Figure 2. Average ranking based on the Friedman test 

 

 
The statistical results of function values show that KSDE is the best option among 13 test functions, 

as shown in Table 2. The possible reason for the good performance of KSDE includes two aspects. First, the 

clustering method can improve one’s exploration ability. Second, the SIM method enhances the population’s 

diversity by migrating individual information among different groups. 
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Table 2. Comparison with reference algorithm for each dimension 
    CoDE jDE JADE MPEDE KSDE 

F   Mean Std Mean Std Mean Std Mean Std Mean Std 

f1 

D=30 1.16E-19 2.05E-19 6.90E-18 4.38E-18 3.59E-39 1.24E-38 4.42E-13 2.99E-13 9.34E-105 3.04E-104 

D=50 8.71E-13 7.36E-13 3.01E-11 2.41E-11 4.79E-28 2.11E-27 2.37E-09 1.42E-09 1.97E-98 9.59E-98 

D=100 2.34E-05 1.16E-05 1.93E-05 1.07E-05 9.06E-12 6.94E-12 2.71E-04 1.66E-04 1.92E-97 4.47E-97 

f2 

D=30 7.89E-11 4.88E-11 3.37E-11 1.53E-11 1.29E-16 3.96E-16 1.25E-06 5.89E-07 5.53E-52 1.50E-51 

D=50 2.90E-07 1.03E-07 2.30E-07 1.00E-07 2.65E-15 3.59E-15 6.73E-05 2.13E-05 5.91E-49 2.63E-48 

D=100 1.24E-03 4.34E-04 8.37E-04 2.49E-04 4.45E-07 7.83E-07 2.29E-02 9.93E-03 2.70E-46 6.65E-46 

f3 

D=30 2.25E-03 2.93E-03 3.07E+00 1.64E+00 2.43E-09 3.26E-09 4.07E-06 9.49E-06 1.34E-24 3.69E-24 

D=50 1.62E+01 7.16E+00 4.82E+02 2.30E+02 8.61E-02 5.43E-02 1.56E+00 1.23E+00 8.83E-17 3.52E-16 

D=100 2.02E+03 7.09E+02 1.14E+04 1.62E+04 5.22E+02 1.78E+02 4.05E+02 1.43E+02 4.85E-03 2.42E-02 

f4 

D=30 1.26E-04 8.06E-05 1.06E+00 1.05E+00 1.29E-05 1.38E-05 3.17E-04 1.11E-04 6.28E-46 1.66E-45 

D=50 1.58E-01 1.34E-01 9.50E+00 3.45E+00 1.99E+00 9.22E-01 5.21E-02 2.10E-02 8.82E-43 1.59E-42 

D=100 1.42E+01 2.73E+00 2.58E+01 3.43E+00 1.27E+01 1.66E+00 3.38E+00 5.08E-01 1.33E-39 2.15E-39 

f5 

D=30 1.91E+01 1.60E+01 2.74E+01 1.68E+01 2.68E+00 1.21E+00 2.02E+01 1.16E+00 1.07E+00 5.37E+00 

D=50 4.87E+01 2.08E+01 6.54E+01 3.24E+01 3.96E+01 1.69E+01 4.91E+01 1.52E+01 1.88E+00 9.41E+00 

D=100 2.26E+02 6.04E+01 2.41E+02 7.18E+01 2.41E+02 5.65E+01 1.74E+02 6.48E+01 1.17E+01 3.22E+01 

f6 

D=30 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

D=50 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.40E-01 5.97E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

D=100 0.00E+00 0.00E+00 4.00E-02 2.00E-01 7.20E+00 4.48E+00 2.60E+00 2.92E+00 0.00E+00 0.00E+00 

f7 

D=30 8.12E-03 2.13E-03 1.02E-02 2.45E-03 2.07E-03 5.94E-04 3.14E-03 8.26E-04 3.11E-04 1.70E-04 

D=50 2.28E-02 7.04E-03 2.34E-02 5.12E-03 5.15E-03 1.49E-03 9.53E-03 3.22E-03 4.07E-04 1.86E-04 

D=100 1.36E-01 3.05E-02 6.58E-02 1.12E-02 5.62E-02 1.19E-02 4.72E-02 1.12E-02 3.36E-04 1.45E-04 

f8 

D=30 -1.26E+04 6.33E-12 -1.26E+04 2.07E-12 -1.26E+04 3.28E+01 -1.23E+04 1.39E+02 -1.26E+04 1.86E-12 

D=50 -2.09E+04 1.70E+02 -2.09E+04 3.34E-06 -2.09E+04 1.61E+01 -1.79E+04 5.13E+02 -2.09E+04 1.11E-11 

D=100 -2.85E+04 1.32E+03 -4.17E+04 1.50E+02 -3.32E+04 6.03E+02 -2.81E+04 1.18E+03 -4.19E+04 1.49E-11 

f9 

D=30 8.35E+00 3.72E+00 4.00E-05 5.55E-05 1.26E-04 6.75E-05 1.57E+01 3.30E+00 0.00E+00 0.00E+00 

D=50 8.84E+01 1.18E+01 2.04E+01 4.12E+00 1.05E+01 1.54E+00 6.13E+01 7.19E+00 0.00E+00 0.00E+00 

D=100 4.23E+02 3.70E+01 1.85E+02 1.94E+01 1.58E+02 1.09E+01 2.45E+02 2.33E+01 0.00E+00 0.00E+00 

f10 

D=30 6.22E-11 3.32E-11 5.67E-10 2.53E-10 4.87E-15 1.18E-15 2.01E-07 1.06E-07 8.88E-16 0.00E+00 

D=50 1.65E-07 7.24E-08 8.67E-07 3.90E-07 1.27E-14 2.85E-15 1.33E-05 5.00E-06 8.88E-16 0.00E+00 

D=100 7.41E-02 2.54E-01 5.76E-04 1.47E-04 1.61E+00 2.54E-01 3.36E-01 4.90E-01 8.88E-16 0.00E+00 

f11 

D=30 1.00E-13 5.01E-13 1.47E-16 5.14E-16 5.17E-15 2.46E-14 2.23E-08 1.12E-07 0.00E+00 0.00E+00 

D=50 5.92E-04 2.05E-03 4.26E-11 4.03E-11 1.18E-03 3.35E-03 2.36E-03 5.20E-03 0.00E+00 0.00E+00 

D=100 3.56E-03 8.09E-03 1.21E-05 8.00E-06 5.70E-03 1.06E-02 3.18E-03 1.04E-02 0.00E+00 0.00E+00 

f12 

D=30 1.48E-21 1.05E-21 6.64E-19 9.10E-19 1.78E-32 1.03E-32 1.13E-14 1.19E-14 1.57E-32 5.59E-48 

D=50 2.49E-03 1.24E-02 2.34E-12 3.61E-12 3.45E-25 1.71E-24 2.49E-03 1.24E-02 9.42E-33 0.00E+00 

D=100 1.55E-03 6.11E-03 8.09E-06 6.89E-06 6.73E-02 1.22E-01 4.37E-02 6.46E-02 4.71E-33 0.00E+00 

f13 

D=30 1.67E-20 2.46E-20 5.18E-18 5.42E-18 1.43E-32 1.77E-33 2.25E-13 2.13E-13 1.35E-32 5.59E-48 

D=50 4.39E-04 2.20E-03 3.45E-11 2.60E-11 1.87E-27 6.83E-27 9.15E-10 1.26E-09 1.35E-32 5.59E-48 

D=100 1.06E-03 3.01E-03 6.88E-04 2.14E-03 5.67E-01 1.12E+00 2.35E-03 5.34E-03 1.35E-32 5.59E-48 

 

 
For the convenience of illustration, evolution graphs are plotted on seven functions: f1, f3, f5, f7, f9, f10,  

and f13. The evolution process of the mean best values has a dimension of n=30. The results are averaged over 25 
runs. Figure 2 shows the convergence graphs respectively. From Figure 3, one can conclude that KSDE improves 

the convergence of the DE algorithm. 
 

 

    

   
   

Figure 3. The evolution process of the average best values for f1, f3, f5, f7, f9, f10, and f13 with a dimension of 

D=30 over 25 runs 
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5.3. Parameter analysis 
KSDE introduces parameters k and m which determine the diversity of the population. The m is  

the number of individuals selected in the mutation strategy, and k is the number of islands. In this paper, m is 

5. To discover the influence of k on the algorithm efficiency, a number of experiments have been performed 

using 13 problems with a dimension of 30. To select the appropriate parameter k, 25 runs for 13 benchmark 

functions have been completed. Experimental results are shown in Tables 3 and 4. These illustrations show 

that k=2 improves the efficiency of the KSDE algorithm. 

 
 

Table 3. Experimental results with KSDE for different numbers of islands 

F 
k=1 k=2 k=3 k=4 k=5 

Mean Std Mean Std Mean Std Mean Std Mean Std 

f1 2.99E-18 2.71E-18 9.58E-124 3.95E-123 3.38E-104 1.03E-103 2.84E-79 7.37E-79 2.09E-63 5.92E-63 

f2 9.50E-11 4.46E-11 1.32E-61 4.88E-61 1.57E-51 4.49E-51 4.90E-40 6.81E-40 1.78E-31 5.81E-31 

f3 3.25E-01 3.68E-01 6.62E-28 2.24E-27 2.79E-25 6.91E-25 4.91E-19 6.86E-19 1.12E-13 3.88E-13 

f4 1.28E+01 5.54E+00 1.57E-53 3.00E-53 8.82E-46 2.04E-45 3.11E-35 7.11E-35 9.90E-29 1.22E-28 

f5 2.91E+01 2.13E+01 0.00E+00 0.00E+00 1.08E+00 5.39E+00 1.10E+00 5.48E+00 0.00E+00 0.00E+00 

f6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f7 9.99E-03 3.20E-03 2.84E-04 1.70E-04 3.10E-04 1.91E-04 5.56E-04 3.79E-04 5.30E-04 3.43E-04 

f8 -1.15E+04 3.49E+02 -1.26E+04 1.86E-12 -1.26E+04 1.86E-12 -1.26E+04 1.86E-12 -1.26E+04 1.86E-12 

f9 1.38E+01 4.01E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f10 3.52E-10 1.67E-10 8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00 

f11 3.35E-03 7.39E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f12 1.24E-02 4.56E-02 1.57E-32 5.59E-48 1.57E-32 5.59E-48 1.57E-32 5.59E-48 1.57E-32 5.59E-48 

f13 4.39E-04 2.20E-03 1.35E-32 5.59E-48 1.35E-32 5.59E-48 1.35E-32 5.59E-48 1.35E-32 5.59E-48 

 

 

Table 4. Average ranking based on the Friedman test 
Algorithm k=1 k =2 k =3 k =4 k =5 

Ranking 4.85 1.88 2.38 2.92 2.96 

 

 

6. CONCLUSION AND FUTURE WORK 
In this paper, a novel differential evolution algorithm, the soft island model based on k-means clustering 

(KSDE), which maintains population diversity through the soft island model, was proposed. In the process  

of population evolution, the population was divided into many sub-populations by the k-means clustering 
algorithm, and each sub-population performed different mutation strategies. To improve the diversity of DE,  

the population data were divided into different groups by the k-means clustering algorithm, followed by a novel 
information exchange mechanism. The superior performance of KSDE was evaluated on the basis of a set  

of benchmark functions compared with other state-of-the-art DE variants. The experimental results showed that 
KSDE was effective and efficient. In future studies, the effects will be focused on large-scale optimization 

problems with high dimension. Another direction is to apply various tensor operations in DE to optimize real-

world problems further. 
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