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 Motor imagery (MI) responses extracted from the brain in the form of EEG 
signals have been widely utilized for intention detection in brain computer 

interface (BCI) systems. However, due to the non-linearity and the non-
stationarity of EEG signals, BCI systems suffer from low MI prediction rate 
with both known and unknown influncing factors. This paper investigates the 
impact of visual stimulus, feature dimensions and artifacts on MI task 
detection rate, towards improving MI prediction rate. Three EEG datasets 
were utilized to facilitate the investigation. Three filters (band-pass, notch 
and common average reference) and the independent component analysis 
(ICA) were applied on each datasets, to eliminate the impact of artifact. 
Three sets of features where extracted from artifact free ICA components, 

from which more relevant features were selected. Moreover, the selected 
feature subsets were incorporated into three classifiers, NB, Regression Tree 
and K-NN to predict four MI and hybrid tasks. K-NN classifier outperformed 
the other two classifies in each dataset. The highest classification accuracy is 
obtained in hybrid task EEG dataset. Moreover, accurately predicted EEG 
classes were applied to a robotic arm control. 
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1. INTRODUCTION  

Brain computer interface (BCI) systems in recent years have emerged as a breakthrough technology, 

capable of aiding individuals suffering from severe motor disabilities interact with the surrounding 

environment using only imagined movements. Brain computer interface is a process of extracting neural 

activities of the brain in the form of EEG signals, and transforming them into control commands utilized to 

control electronic equipment. However, during acquisition of EEG signals from the brain several 

interferences exist (such as physiological and non-physiological artifacts) which may have significant impact 

on the quality of recorded EEG signals. Moreover, during translation of EEG signals into control commands 

the dimension of extracted feature set may also have significant impact on the performance signal classifiers, 

mainly as a result of redundant features contained within the extracted feature set. As such low MI detection 
and prediction is still one of the most significant challenges in EEG based BCI systems. Recently countless 

techniques have been developed to address the challenge of low MI detection and prediction. [1] proposed a 

BCI system that utilized EEG dataset acquired from BCI competition III-a database, whereby four band-pass 

filters were firstly applied on EEG dataset to eliminate artifacts. Moreover, common spatial pattern technique 

was utilized to extract features from pre-processed EEG dataset. As such SVM was utilized to predict two MI 

classes from extracted features, and a highest classification accuracy of 85.5% was achieved. [2] proposed a 

BCI system that utilizes EEG dataset acquired from BCI competition II database from which a 0.5Hz - 30Hz 
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elliptic band-pass filter was applied to eliminate artifacts. Furthermore, statistical features were extracted 

from pre-processed EEG dataset, whereby SVM and multi-perceptron classifiers were both applied on 

extracted features to predict two MI classes. The highest classification accuracy of 85% and 85.71% were 

obtained from both signal classifiers respectively. Multiple filters were reported by combining with one-to-

one classification [3]. This paper investigates the impact of visual stimulus, artifacts and feature dimension 

on prediction rate. To evaluate the above mentioned factors a hybrid EEG based BCI system consisting of 

five stages is proposed. In this case a signal acquisition stage utilized to record EEG datasets, a pre-

processing stage utilized to filter and decompose EEG signals to remove noise and artifactual components, 
whereby artifact free ICA components are utilized to extract three sets of features from each of the three 

datasets during feature extraction stage. Moreover, relevant signal feature subsets with high predictive power 

are selected, and used as inputs to signal classifiers to predict four MI task during feature selection and 

classification stage respectively. 

 

 

2. RESEARCH METHOD  

2.1.  EEG signal acquisition 

A publicly available database (BCI competition IV-a) and two online recorded EEG datasets using a 

gtec EEG recording system were utilized [4]. BCI competition IV-a dataset was acquired from nine healthy 

subjects using twenty-two Ag/AgCl channels position on the scalp according to a 10-20 electrode positioning 

system as illustrated in Figure 1(b), whereby EEG signals were recorded at a sampling rate of 250Hz [5].  
At the beginning of the experiment a fixed cross and a two second beeping sound were utilized to notify the 

subjects to begin imagining, and each subject was required to performed four motor imagery task (left hand, 

right hand, tongue and both feet) [6]. Furthermore, two EEG datasets were non-invasively recorded from one 

subject at a sampling rate of 250Hz using 16 electrodes. In this case imagine only EEG dataset recorded 

while the subject performed four motor imagery tasks as illustrated in Figure 1(a). Secondly a hybrid tasks 

EEG dataset recorded while the subject performed a combination of SSVEP and MI tasks. As such visual 

stimulus in the form of four flashing balls were displayed on an LCD monitor, while the subject performed four 

MI tasks [7]. For both online recorded EEG datasets at the beginning of a trial the subject was requested to 

imagine the required MI task for 300 seconds [8]. Moreover, a beeping sound was utilized to notify the subject 

to begin imagining any of the four MI tasks (left hand, right hand, tongue and both feet) [9]. As such the same 

process was repeated for the other three MI classes and as a result a trial lasted for twenty minutes. For hybrid 
EEG dataset the same experimentation paradigm as MI tasks was repeated, in this case the visual stimulus were 

tagged with four different frequencies (29 Hz, 13.3 Hz, 17 Hz, 21 Hz) corresponding to each MI task [10].  

 

 

 
 

Figure 1. 10-20 electrode positioning system for online recorded EEG datasets (b) 10-20 electrode 
positioning system for BCI competition IV-a dataset [6] 

 

 

2.2.  EEG signal preprocessing 

In this section a 0.5-60 Hz band-pass, 48-52 Hz notch and a CAR filter were firstly applied on both 

sets of recorded EEG data to eliminate the impact of non-physiological artifacts [11]. Subsequently, a 0.5-

100 Hz band-pass and a 50Hz notch filter was also applied on BCI competition IV-a dataset. EEGLAB was 

utilized to implement runICA algorithm, consequently sixteen and twenty-two ICA components were 
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generated from both filtered online recorded and BCI competition EEG dataset respectively, from which 

artifactual components can be rejected [12]. Furthermore, sixteen ICA components acquired from imagined 

only dataset were manually evaluated to eliminate artifactual windows using a sliding window technique. 

Moreover, each component was divided into twenty blocks containing twenty windows each, then a sliding 

window represented by two red vertical lines was applied on each block to remove artifactual windows as 

illustrated in Figure. 2.  

 

 

 

 
 

Figure 2. Sliding window approach applied on imagine only ICA components 

 

 

2.3.  Feature extraction 

Three sets of features were extracted from each ICA component and component eight online 

recorded and BCI competition IV-a datasets respectively. Fast fourier transform (FFT) denoted by (1) was 

utilized to extract band-power features in the form of five frequency bands (namely delta (δ): 0.5 – 3 Hz, 

theta (θ): 4 – 8 Hz, alpha (α): 8 – 12 Hz, beta (β):12 – 30 Hz and gemma (γ): 30 – 60 Hz) from ICA 

components [13-15].  

 

𝑋(𝑓) = 𝐹*𝑥(𝑡)+ = ∫𝑥(𝑡)𝑒−2𝜋𝑓𝑡𝑑𝑡 (1) 

 

FFT is denoted by 𝑋(𝑓) and EEG signals in time domain denoted by 𝑥(𝑡)[16]. MATLAB statistical 

toolbox was utilized to extract ten signal features from each of the three EEG datasets (namely mean, 

median, standard deviation, mean absolute deviation, skewness, kurtosis, spectral entropy and dominant 

frequency features (maximum frequency, maximum value, maximum ratio)) [17]. 

 

𝜎 =  √
1

𝑁
∑ (𝑥𝑖 − 𝑥)2𝑁
𝑖=1  (2) 

 

In this case standard deviation (𝜎) is denoted by (2), and signals within a specific window denoted 

by 𝑥𝑖. Moreover, the arithmetic mean of signals within a specific window is denoted by 𝑥, with   

representing the data points in total within a specific window [18]. 

 

𝑀 = 
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1  (3) 
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Mean of a signal (M) denoted by (3), whereby signals within a specific window are denoted by 𝑥𝑖 
and with   signifying the overall samples within a window [18]. 

 

𝑀𝑒𝑑𝑒𝑣𝑒𝑛 = 
𝑛

2
+(

𝑛

2
+1)

2
 (4) 

 

𝑀𝑒𝑑𝑜𝑑𝑑 = 
(𝑛+1)

2
 (5) 

 

Median of a signal is computed using either (4) or (5) depending on whether   is even or odd, 

whereby the overall sample points within a certain window is denoted by   [18]. 

 

𝑃(𝜔𝑖) =  
1

𝑁
|𝑋(𝜔𝑖)|

2
 (6) 

 

𝑃𝑖 = 
𝑃(𝜔𝑖)

∑𝑃(𝜔𝑖)
 (7) 

 

𝑃𝑆𝐸 = −∑ 𝑃𝑖 ln 𝑃𝑖
𝑛
𝑖=1  (8) 

 

Power spectral entropy (PSE) in (8) is dependent on power spectral density 𝑃(𝜔𝑖), and  

the normalized power spectral density 𝑃𝑖 defined both (6) and (7) respectively. Whereby 𝑋(𝜔𝑖) and   in (6) 

signifies the value of signals within a certain window, and the overall samples with a certain window 

respectively. Moreover, the combination of all signal values acquired through the PSD is denoted by ∑𝑃(𝜔𝑖) 
in (7) [18]. 

 

𝑀𝐴𝐷 = 
1

𝑁
∑ |𝑥𝑛 − 𝑥|𝑁
𝑖=1  (9) 

 

As shown in (9) defines the mean absolute deviation (MAD) of a signal, whereby 𝑥𝑛 represents 

signals within a specific window. 𝑥 represents the arithmetic mean of signals within a specific window and   

representing the data points in total within a specific window [19]. Skewness and kurtosis is defined using 

both (10) and (11), whereby 𝑀 represents the overall samples within a signal and   representing sub-

bands[20]. Wavelet packet transform (WPT) was utilized to extract 255 wavalet features from pre-processed 

EEG signals [21, 22]. 

 

∅ = √1

𝑀
∑

(𝑦𝑗−𝜇)
3

𝜎3
𝑀
𝑗=1  (10) 

 

∅ = √1

𝑀
∑

(𝑦𝑗−𝜇)
4

𝜎4
𝑀
𝑗=1  (11) 

 

𝐴𝑖(𝑡) =  ∑ 𝐴𝑖−1(𝑘)∅𝑖(𝑡 − 𝑘)∞
𝑘=−∞  (12) 

 

𝐷𝑖(𝑡) =  ∑ 𝐴𝑖−1(𝑘)
∞
𝑘=−∞ 𝜓𝑖(𝑡 − 𝑘) (13) 

 

 

Two filters denoted by 𝑥(𝑡) were utilized to decompose signals into multiple separate coeffients 

through a wavelet transform, whereby n represents the number of samples. A lowpass and highpas filter in 

the form of a wavelet and a scaling function decomposed signals into detail (13) and approximation 

coeffients (12) respectively [23, 24]. As such decomposed approximation coefficients in each level resulted 

in WPT tree comprising of both detail and approximation coefficients as illustrated in Figure 3 [25, 26]. 

 

𝑥(𝑡) =  ∑ 𝐴𝑖−1(𝑘)∅𝑖(𝑡 − 𝑘) + ∑ ∑ 𝐴𝑖−1(𝑘)
∞
𝑘=−∞ 𝜓𝑖(𝑡 − 𝑘)𝐿

𝑖=1
∞
𝑘=−∞  (14) 

 
As shown in (14) was utilized to reconstruct decomposed wavelet coefficients from which wavelet 

features are extracted using overlapping window approach and separated into several windows with each 

window size set to 750, and each window incremented by 750 or 750 spaces apart [27, 28]. 
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Figure 3. Seven decomposition levels using 4th order daebuchies wavelet 

 

 

2.4.  Feature selection and classification 

In this section differential evolution based channel and feature selection (DEFS) algorithm  

was applied on extracted features, to eliminate redundant features and the challenge dimensionality [26].  

In this case DEFS algorithm was utilized to train three signal classifiers and then select the best feature 

subsets using six input parameters. Features were divided into training and testing set, with the last column of 

the features matrices being the class labels. As such the speed with which features converge between the 1st 
and 500th generation was evaluated and utilized as a criterion to determine the DNF (in this case 30, 50, 80) 

and PSIZE (150) parameter in which the DEFS algorithm performs at its optimal best using the error rate. 

The desired number of features (DNF) was set to 80 and 130 for online recorded and BCI competition IV-a 

dataset respectively, while the population size (PSIZE) was set to 150. Consequently, the number of 

iterations was set to start at zero while the number of generations (GEN) was set to 1000 as our terminating 

condition. Three signal classifiers (K-nearest neighbor, Naïve bayes and Regression tree) were applied on 

extracted features to predict both MI and hybrid tasks [29, 30]. As such the performance of each of the three 

signal classifiers was firstly evaluated to determine the best performing classifier, whereby the best 

performing classifier was then utilized during robotic arm control. Extracted feature sets were divided into 

test and training set incorporated into each of the three classifiers. Moreover, the best 80 and 130 feature 

subsets were also incorporated into each of the three signal classifiers utilized to predict both MI and  
hybrid tasks. 

 

 

3. RESULTS AND ANALYSIS 

3.1.  EEG data source and pre-processing 

Three sets of EEG data are utilized in the proposed BCI system. Firstly a publicly available database 

(BCI completion IV-a) consisting of EEG signals acquired from 22 EEG channels, subject two dataset was 

utilized for this experiment and the dataset consisted of a signal length of 677169 frames per epoch [8]. 

Secondly two online recorded datasets acquired from 16 EEG channels attached to gGEMMA sensor cap. 

Both datasets were recorded for 20 minutes and resulted in a signal length of 300000 frames per epoch [9]. 

Twenty-two ICA components acquired from BCI competition IV-a were visually inspected, whereby EEG 

spectrum or power spectrum of each component was evaluated [9]. As such spectral peaks at certain 
frequencies and dipole-like scalp maps were evaluated mainly to reject artifactual components as shown in 

Figure 4 and Figure 5 respectively. In this case ICA component eight was selected for further  

signal processing. 

 

 

 
 

Figure 4. Twenty-two ICA components generated from BCI competition IV-a dataset 
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Figure 5. Component spectra and maps 

 

 

A sliding window approach utilized to remove artifactual windows from all sixteen ICA 

components acquired from imagine only EEG dataset, whereby 2295 artifactual windows were removed from 

all components. As such a minimum of 53 and a maximum of 243 windows were removed per component. 
 

3.2.  Extracted and DEFS selected feature sets 

Three sets of features were extracted from each of the three datasets namely wavelet, band-power 

and statistical features as illustrated in Table 1. Consequently, BCI competition IV-a and both online 

recorded datasets resulted in a 4590x271 and 480x271 feature matrix respectively [6]. Both 4590 and 480 

represented the number of samples while 271 represented the total number of feature with the last column 

signifying the class labels. 

Features convergence and DEFS algorithm performance is at its optimal best when the DNF is set to 

80 and PSIZE to 150 as illustrated in Figure 6 [26]. As such 80 and 130 feature subsets were selected from 

bothonline recorded datasets and BCI competition IV-a dataset respectively as illustrated in Table 2 and 

Table 3 [3]. 
 

 

Table 1. Extracted feature sets 
Features Types of features Feature extraction algorithm Number of features 

Band power delta: 0.5 – 3 Hz, theta: 4 – 8 Hz, alpha: 8 – 12 Hz, 

beta:12 – 30 Hz, gemma:30 – 60 Hz 

FFT 5 

Statistical 

Features 

Mean, Median, standard deviation, mean absolute 

deviation, skewness, kurtosis, spectral entropy, 

dominant frequency features (maximum frequency, 

maximum value and maximum ratio)) 

Statistical Computation 

(MATLAB statistical toolbox) 

10 

Wavelet features Wavelet coefficients WPT 255 

 

 

 

 
 

Figure 6. Feature convergence during feature selection 

 

 

Table 2. 130 selected feature subsets 
Desired number of features Length of features Category of features(number)  

130 4590 
Wavelet features (123), Band-power (Gamma) (1), Statistical (6), (Mean, 

Median, skewness, kurtosis, dominant frequency standard deviation, Maxratio)  
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Table 3. 80 selected feature subsets 
Desired number of features Length of features Category of features(number)  

80 4590 
Wavelet features (76), Band-power (Gamma) (2), Statistical (2), (Mean, 

Median, skewness, kurtosis, dominant frequency standard deviation, Maxratio)  

 

 

3.3.  Feature classification 

In this section the training set, test set and the best selected feature subsets were incorporated into 

each of the three signal classifiers for performance evaluation (K-NN, NB and Regression tree) [25]. 

Consequently, K-NN classifier outperformed all classifiers obtaining a highest accuracy of 88.2%, 69.7% and 

100% BCI competition IV-a, imagine only and hybrid tasks datasets respectively as illustrated in Figure 7, 

Figure 8, and Figure 9.  

 

 

  
 

Figure 7. Classification results for BCI 

competition IV-a 

 

Figure 8. Classification results for imagine only EEG dataset 

 

 

 

 
 

Figure 9. Classification results for hybrid tasks EEG dataset 

 

 

3.4.  Robotic ARM control 
In this section, the success rate of each of both MI tasks and hybrid tasks was evaluated. 

Consequently, hybrid task obtained the highest success rate for each class as illustrated in Table 4. As such 

hybrid tasks were utilized to validate predicted classes through dobot magician robotic arm control. 

MATLAB was interfaced with arduino board via a serial communication port, whereby pins (Tx, Rx, GND 

and 5V) on the arduino board were connected to pins (Rx, Tx, GND and 5V) on the communication interface 

of the robotic arm respectively. MATLAB script was utilized to send any of the predicted classes to Arduino 

board. The PTP mode was set to MOVL on arduino script. Whenever arduino script received a character 

value (class label) from MATLAB script, four robotic movement (left, right, up and down) corresponding to 

each predicted class were executed. 
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Table 4. Success rate for each MI and hybrid task 
Class Left Right Up Down Average 

MI Tasks (Competition) 80.92% 87.03% 94.66% 90.3% 88.2%  

MI Tasks (Online recorded) 57.45% 55.85% 72.5% 63.58% 62.3% 

Hybrid Tasks (Online recorded) 97.22% 88.95% 94.74% 95.79% 94.17%  

 

 

4. CONCLUSION 

A hybrid task EEG-based BCI system was presented in this study with an objective of improving MI 

task detection rate by investigating the impact of artifacts, extracted feature dimension and visual stimulus on 

MI task detection rate. Three EEG datasets consisting of MI and hybrid tasks respectively, were utilized to 

facilitate the investigation. A runICA algorithm was then utilized to eliminate the impact of artifacts on all 

filtered EEG datasets. FFT and WPT algorithms were then applied on artifact free components to extract 

three sets of features, from which the DEFS algorithm eliminated the impact of dimensionality by selecting 

relevant feature subsets. Moreover, the selected feature subsets were utilized as input parameters to three 

classifiers (K-NN, NB and RegTree). Consequently, K-NN classifier obtained a highest intention detection 

rate of 100% for hybrid tasks. Moreover, accurately predicted hybrid tasks were validated through a robotic 
arm control. As such this study has conclusively proven that visual stimulus, artifacts free ICA components 

and DEFS selected high predictive feature subsets can significantly enhence MI task prediction rate in  

BCI system. 
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